Skip to main content

Secondary Ion Mass Spectrometry Imaging of Biological Cells and Tissues

  • Protocol
  • First Online:
Electron Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1117))

Abstract

Secondary ion mass spectrometry (SIMS) is capable of providing detailed atomic and molecular characterization of the surface chemistry of (bio)molecular samples. It is one of a range of mass spectrometry imaging techniques that combine the high sensitivity and specificity of mass spectrometry with the capability to view the distribution of analytes within solid samples. The technique is particularly suited to the detection and imaging of small molecules such as lipids and other metabolites. A limit of detection in the ppm range and spatial resolution <1 μm can be obtained. Recent progress in instrumental developments, including new cluster ion beams, the implementation of tandem mass spectrometry (MS/MS), and the application of multivariate data analysis protocols promise further advances. This chapter presents a brief overview of the technique and methodology of SIMS using exemplar studies of biological cells and tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vickerman JC, Briggs D (eds) (2001) ToF-SIMS: surface analysis by mass spectrometry.. Surface Spectra, Manchester

    Google Scholar 

  2. Benninghoven A (1973) Surface investigation of solids by the statical method of secondary ion mass spectroscopy (SIMS). Surf Sci 35:427–437

    Article  CAS  Google Scholar 

  3. Touboul D, Laprévote O, Brunelle A (2011) Micrometric molecular histology of lipids by mass spectrometry imaging. Curr Opin Chem Biol 15:725–732

    Article  CAS  PubMed  Google Scholar 

  4. Malmberg P, Jennische E, Nilsson D et al (2011) High-resolution, imaging TOF-SIMS: novel applications in medical research. Anal Bioanal Chem 399:2711–2718

    Article  CAS  PubMed  Google Scholar 

  5. Passarelli MK, Winograd N (2001) Lipid imaging with time-of-flight secondary ion mass spectrometry (ToF-SIMS). Biochim Biophys Acta 1811:976–990

    Article  Google Scholar 

  6. Chughtai K, Heeren RMA (2010) Mass spectrometric imaging for biomedical tissue analysis. Chem Rev 110:3237–3277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. McPail D, Dowsett M (2009) Dynamic SIMS. In: Vickerman JC, Gilmore IS (eds) Surface analysis—the principal techniques. Wiley, Chichester, pp 207–268

    Chapter  Google Scholar 

  8. Guerquin-Kern JL, Wu TD, Quintana C et al (2005) Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS spectroscopy). Biochim Biophys Acta Gen Subjects 1724:228–238

    Article  CAS  Google Scholar 

  9. Cheng J, Wucher A, Winograd N (2006) Molecular depth profiling with cluster ion beams. J Phys Chem B 110:8329–8336

    Article  CAS  PubMed  Google Scholar 

  10. Mahoney CM (2010) Cluster secondary ion mass spectrometry of polymers and related materials. Mass Spectrom Rev 29:247–293

    CAS  PubMed  Google Scholar 

  11. Fletcher JS, Lockyer NP, Vickerman JC (2011) Developments in molecular SIMS depth profiling and 3D imaging of biological systems using polyatomic primary ions. Mass Spectrom Rev 30:142–174

    Article  CAS  PubMed  Google Scholar 

  12. Niehuis E, Heller T, Feld H et al (1987) Design and performance of a reflectron based ToF-SIMS with electrodynamic primary ion mass separation. J Vac Sci Technol 5:1243–1246

    Article  CAS  Google Scholar 

  13. Carado A, Passarelli MK, Kozole J et al (2008) C60 secondary ion mass spectrometry with a hybrid-quadrupole orthogonal time-of-flight mass spectrometer. Anal Chem 80:7921–7929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Fletcher JS, Rabbani S, Henderson A et al (2008) A new dynamic in mass spectral imaging of single biological cells. Anal Chem 80:9058–9064

    Article  CAS  PubMed  Google Scholar 

  15. Smith DF, Robinson EW, Tolmachev AV et al (2011) C60 secondary ion Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 83:9552–9556

    Article  CAS  PubMed  Google Scholar 

  16. Steere RL (1957) Electron microscopy of structural detail in frozen biological specimens. J Biophys Biochem Cytol 3:45–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Chandra S, Smith DR, Morrison GH (1986) Imaging intracellular elemental distribution and ion fluxes in cultured cells with ion microscopy. J Microsc (Oxford) 144:15–37

    Article  CAS  Google Scholar 

  18. Goodwin RJA (2012) Sample preparation for mass spectrometry imaging: small mistakes can lead to big consequences. J Proteomics 75:4893–4911

    Article  CAS  PubMed  Google Scholar 

  19. Kaletaş BK, VanderWiel IM, Stauber J et al (2009) Sample preparation issues for tissue imaging by imaging MS. Proteomics 9:2622–2633

    Article  PubMed  Google Scholar 

  20. Malm J, Giannaras D, Riehle MO et al (2009) Fixation and drying protocols for the preparation of cell samples for time-of-flight secondary ion mass spectrometry analysis. Anal Chem 81:7197–7205

    Article  CAS  PubMed  Google Scholar 

  21. Fletcher JS, Rabbani S, Henderson A et al (2011) Three‐dimensional mass spectral imaging of HeLa‐M cells—sample preparation, data interpretation and visualisation. Rapid Commun Mass Spectrom 25:925–932

    Article  CAS  PubMed  Google Scholar 

  22. Wu L, Lu X, Kulp KS et al (2007) Imaging and differentiation of mouse embryo tissues by ToF-SIMS. Int J Mass Spectrom 260:137–145

    Article  CAS  Google Scholar 

  23. Wittig A, Wiemann M, Fartmann M et al (2005) Preparation of cells cultured on silicon wafers for mass spectrometry analysis. Micros Res Tech 66:248–258

    Article  CAS  Google Scholar 

  24. Chandra S, Bernius MT, Morrison GH (1986) Intracellular localisation and diffusible elements in frozen-hydrated biological specimens with ion microscopy. Anal Chem 58:493–496

    Article  CAS  PubMed  Google Scholar 

  25. Jackson ERJ, Vickerman JC, Lockyer NP (2011) A systematic evaluation of cytospinning as a novel technique for the preparation of cells for ToF-SIMS analysis. Surf Interface Anal 43:290–293

    Article  CAS  Google Scholar 

  26. Schwartz SA, Reyzer ML, Caprioli RM (2003) Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom 38:699–708

    Article  CAS  PubMed  Google Scholar 

  27. Jones EA, Lockyer NP, Vickerman JC (2008) Depth profiling brain tissue sections with a 40 keV C60 + primary ion beam. Anal Chem 80:2125–2132

    Article  CAS  PubMed  Google Scholar 

  28. Piwowar AM, Lockyer NP, Vickerman JC (2009) Salt effects on ion formation in desorption mass spectrometry: an investigation into the role of alkali chlorides on peak suppression in time-of-flight secondary ion mass spectrometry. Anal Chem 81:1040–1048

    Article  CAS  PubMed  Google Scholar 

  29. Sjovall P, Lausmaa J, Nygren H et al (2003) Imaging of membrane lipids in single cells by imprint-imaging time-of-flight secondary ion mass spectrometry. Anal Chem 75:3429–3434

    Article  PubMed  Google Scholar 

  30. Berman ESF, Fortson SL, Checchi KD et al (2008) Preparation of single cells for imaging/profiling mass spectrometry. J Am Soc Mass Spectrom 19:1230–1236

    Article  CAS  PubMed  Google Scholar 

  31. Delcorte A, Bertrand P (2005) Metal salts for molecular ion yield enhancement in organic secondary ion mass spectrometry: A critical assessment. Anal Chem 77:2107–2115

    Article  CAS  PubMed  Google Scholar 

  32. Delcote A, Médard N, Bertrand P (2002) Organic secondary ion mass spectrometry: sensitivity enhancement by gold deposition. Anal Chem 74:4955–4968

    Article  Google Scholar 

  33. Wu KJ, Odom RW (1996) Matrix-enhanced secondary ion mass spectrometry: a method for molecular analysis of solid surfaces. Anal Chem 68:873–882

    Article  CAS  PubMed  Google Scholar 

  34. Maarten Altelaar AF, van Minnen J, Jiménez CR et al (2005) Direct molecular imaging of Lymnaea stagnalis nervous tissue at subcellular spatial resolution by mass spectrometry. Anal Chem 77:735–741

    Article  Google Scholar 

  35. Svara FN, Kiss A, Jaskolla TW et al (2011) High-reactivity matrices increase the sensitivity of matrix enhanced secondary ion mass spectrometry. Anal Chem 83:8308–8313

    Article  CAS  PubMed  Google Scholar 

  36. Nygren H, Eriksson C, Malmberg P et al (2003) A cell preparation method allowing subcellular localization of cholesterol and phosphocholine with imaging ToF-SIMS. Coll Surf Biointerfaces 30:87–92

    Article  CAS  Google Scholar 

  37. Nygren H, Malmberg P (2004) Silver deposition on freeze-dried cells allows subcellular localization of cholesterol with imaging TOF-SIMS. J Microsc (Oxford) 215:156–161

    Article  CAS  Google Scholar 

  38. Nygren H, Malmberg P, Kriegeskotte C et al (2004) Bioimaging ToF-SIMS: localization of cholesterol in rat kidney sections. FEBS Lett 566:291–293

    Article  CAS  PubMed  Google Scholar 

  39. Pacholski ML, Cannon DM, Ewing AG et al (1998) Static ToF-SIMS imaging of freeze-fractured, frozen-hydrated biological membranes. Rapid Commun Mass Spectrom 12:1232–1235

    Article  CAS  PubMed  Google Scholar 

  40. Pacholski ML, Cannon DM, Ewing AG et al (1999) Imaging of exposed headgroups and tailgroups of phospholipids membranes by mass spectrometry. J Am Soc Mass Spectrom 121:4716–4717

    CAS  Google Scholar 

  41. Colliver TL, Brummel CL, Pacholski ML et al (1997) Atomic and molecular imaging at the single-cell level with ToF-SIMS. Anal Chem 69:2225–2231

    Article  CAS  PubMed  Google Scholar 

  42. Roddy TP, Cannon DM Jr, Meserole CA et al (2002) Imaging of freeze-fractured cells with in-situ fluorescence and ToF-SIMS. Anal Chem 74:4011–4019

    Article  CAS  PubMed  Google Scholar 

  43. Roddy TP, Cannon DM Jr, Ostrowski SG et al (2002) Identification of cellular sections with imaging mass spectrometry following freeze fracture. Anal Chem 74:4020–4026

    Article  CAS  PubMed  Google Scholar 

  44. Kurczy ME, Piehowski PD, Van Bell CT et al (2010) Mass spectrometry imaging of mating Tetrahymena show that changes in cell morphology regulate lipid domain formation. Proc Natl Acad Sci U S A 107:2751–2756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Lanekoff I, Kurczy ME, Hill R et al (2010) Time of flight mass spectrometry imaging of samples fractured in situ with a spring-loaded trap system. Anal Chem 82:6652–6659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Weibel D, Wong S, Lockyer N et al (2003) A C60 primary ion beam system for time of flight secondary ion mass spectrometry: its development and secondary ion yield characteristics. Anal Chem 75:1754–1764

    Article  CAS  PubMed  Google Scholar 

  47. Davies N, Weibel DE, Lockyer NP et al (2003) Development and experimental application of a gold liquid metal ion source. Appl Surf Sci 203–204:223–227

    Article  Google Scholar 

  48. Kollmer F (2004) Cluster primary ion bombardment of organic materials. Appl Surf Sci 231–232:153–158

    Article  Google Scholar 

  49. Touboul D, Halgand F, Brunelle A et al (2004) Tissue molecular ion imaging by gold cluster ion bombardment. Anal Chem 76:1550–1559

    Article  CAS  PubMed  Google Scholar 

  50. Ninomiya S, Ichiki K, Yamada H et al (2009) Molecular depth profiling of multilayer structures of organic semiconductor materials by secondary ion mass spectrometry with large argon cluster ion beams. Rapid Commun Mass Spectrom 23:3264–3268

    Article  CAS  PubMed  Google Scholar 

  51. Moritani K, Mukai G, Hashinokuchi M et al (2011) Energy-dependent fragmentation of polystyrene molecule using size-selected Ar gas cluster ion beam projectile. Surf Int Anal 43:241–244

    Article  CAS  Google Scholar 

  52. Shard AG, Havelund R, Seah MP et al (2012) Argon cluster ion beams for organic depth profiling: Results from a VAMAS interlaboratory study. Anal Chem 84:7865–7873

    Article  CAS  PubMed  Google Scholar 

  53. Rabbani S, Barber AM, Fletcher JS et al (2011) ToF-SIMS with argon gas cluster ion beams: a comparison with C60 +. Anal Chem 83:3793–3800

    Article  CAS  PubMed  Google Scholar 

  54. Schueler B (1992) Microscopic imaging by ToF-SIMS. Microsc Microanal Microstruct 3:119–139

    Article  Google Scholar 

  55. Jungmann JH, MacAleese L, Visser J et al (2011) High Dynamic range biomolecular ion microscopy with the Timepix detector. Anal Chem 83:7888–7894

    Article  CAS  PubMed  Google Scholar 

  56. Klerk L, Lockyer N, Kharchenko A et al (2010) C60 + secondary ion microscopy using a delay line detector. Anal Chem 82:801–807

    Article  CAS  PubMed  Google Scholar 

  57. Sjövall P, Lausmaa J, Johansson B (2004) Mass spectrometric imaging of lipids in brain tissue. Anal Chem 76:4271–4278

    Article  PubMed  Google Scholar 

  58. Richter K, Nygren H, Malmberg P et al (2007) Localization of fatty acids with selective chain length by imaging time-of-flight secondary ion mass spectrometry. Microsc Res Tech 70:640–647

    Article  CAS  PubMed  Google Scholar 

  59. Magnusson YK, Friberg P, Sjövall P et al (2008) TOF-SIMS analysis of lipid accumulation in the skeletal muscle of ob/ob mice. Obesity (Silver Spring) 16:2745–2753

    Article  CAS  Google Scholar 

  60. Touboul D, Roy S, Germain DP et al (2007) MALDI-TOF and cluster-TOF-SIMS imaging of Fabry disease biomarkers. Int J Mass Spectrom 260:158–165

    Article  CAS  Google Scholar 

  61. Tahallah N, Brunelle A, De La Porte S et al (2008) Lipid mapping in human dystrophic muscle by cluster-time-of-flight secondary ion mass spectrometry imaging. J Lipid Res 49:438–454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Debois D, Bralet MP, Le Naour F et al (2009) In situ lipidomic analysis of nonalcoholic fatty liver by cluster TOF-SIMS imaging. Anal Chem 81:2823–2831

    Article  CAS  PubMed  Google Scholar 

  63. Brulet M, Seyer A, Edelman A et al (2010) Lipid mapping of colonic mucosa by cluster TOF-SIMS imaging and multivariate analysis in cftr knockout mice. J Lipid Res 51:3034–3045

    Article  CAS  PubMed  Google Scholar 

  64. Fletcher JS, Lockyer NP, Vaidyanathan S et al (2007) ToF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C60) primary ions. Anal Chem 79:2199–2206

    Article  CAS  PubMed  Google Scholar 

  65. Breitenstein D, Rommel CE, Mollers R et al (2007) The chemical composition of animal cells and their intracellular compartments reconstructed from 3D mass spectrometry. Angew Chem Int Ed 46:5332–5335

    Article  CAS  Google Scholar 

  66. Szakal C, Hues SM, Bennett J et al (2010) Effect of cluster ion analysis fluence on interface quality in SIMS molecular depth profiling. J Phys Chem C 114:5338–5343

    Article  CAS  Google Scholar 

  67. Brison J, Muramoto S, Castner DG (2010) ToF-SIMS depth profiling of organic films: a comparison between single-beam and dual-beam analysis. J Phys Chem C114:5565–5573

    Google Scholar 

  68. Klinkert I, McDonnell LA, Luxembourg SL et al (2007) Tools and strategies for visualization of large image data setsin high-resolution imaging mass spectrometry. Rev Sci Instrum 78:053716

    Article  PubMed  Google Scholar 

  69. Xiong X, Xu W, Eberlin LS et al (2012) Data processing for 3D mass spectrometry imaging. J Am Soc Mass Spectrom 23:1147–1156

    Article  CAS  PubMed  Google Scholar 

  70. Vickerman JC, Briggs D, Henderson A (2002) The static SIMS library Ver. 3. Surface Spectra Ltd, Manchester

    Google Scholar 

  71. Park JW, Min H, Kim YP et al (2009) Multivariate analysis of ToF-SIMS data for biological applications. Surf Interface Anal 41:694–703

    Article  CAS  Google Scholar 

  72. Smentkowski VS, Ostrowski SG, Keenan MR (2009) A comparison of multivariate statistical analysis protocols for ToF-SIMS spectral images. Surf Interface Anal 41:88–96

    Article  CAS  Google Scholar 

  73. Henderson A, Fletcher JS, Vickerman JC (2009) A comparison of PCA and MAF for ToF-SIMS image interpretation. Surf Interface Anal 41:666–674

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. J.C. Vickerman and members of our research group for their contribution. The financial support of the Engineering and Physical Sciences Research Council (EPSRC) and Biotechnology and Biological Sciences Research Council (BBSRC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Lockyer, N.P. (2014). Secondary Ion Mass Spectrometry Imaging of Biological Cells and Tissues. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology, vol 1117. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-776-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-776-1_32

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-775-4

  • Online ISBN: 978-1-62703-776-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics