Skip to main content

Biological Applications of Energy-Filtered TEM

  • Protocol
  • First Online:
Electron Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1117))

Abstract

The techniques of electron energy-loss spectroscopy (EELS) and energy-filtered TEM (EFTEM) are routinely applied in the physical sciences to map the distribution of elements at the nanoscale. EELS can also provide details of the bonding/valence of elements through variations in the fine structure of elemental peaks in the spectrum. While applications of these techniques in biology are less prevalent, their ability to detect both the light elements (e.g., C, N, O, P, S) that form the building blocks of biological systems and heavier elements (e.g., metals) makes them potentially important techniques for investigating local chemical variations in tissues and cells. Successful application of EELS and EFTEM in biology requires both an understanding of the techniques themselves and expertise in specimen preparation. Care must be taken to avoid the diffusion of elements during the preparation process to avoid artifacts in the resulting element maps. The power of the techniques is demonstrated here using tissue from a marine mollusc (chiton).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brydson R (2001) Electron energy loss spectroscopy. BIOS Scientific Publishers Limited, Oxford

    Google Scholar 

  2. Keast VJ, Scott AJ, Brydson R et al (2001) Electron energy-loss near-edge structure—a tool for the investigation of electronic structure on the nanometre scale. J Microsc (Oxford) 203:135–175

    Article  CAS  Google Scholar 

  3. Thomas PJ, Midgley PA (2002) An introduction to energy-filtered transmission electron microscopy. Topics Catalysis 21:109–138

    Article  CAS  Google Scholar 

  4. Verbeek J, Van Dyck D, Van Tendeloo G (2004) Energy-filtered transmission electron microscopy: an overview. Spectrochimica Acta Part B 59:1529–1534

    Article  Google Scholar 

  5. Pennycook SJ (2012) Energy-filtered transmission electron microscopy: an overview. MRS Bull 37:943–951

    Article  CAS  Google Scholar 

  6. Aranova MA, Kim YC, Zhang G et al (2007) Quantification and thickness correction of EFTEM phosphorus maps. Ultramicroscopy 107:232–244

    Article  Google Scholar 

  7. Arsenault AL, Ottensmeyer FP (1983) Quantitative spatial distributions of calcium, phosphorus, and sulfur in calcifying epiphysis by high resolution electron spectroscopic imaging. Proc Natl Acad Sci U S A 80:1322–1326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Leapman RD, Jarnik M, Stevens AC (1997) Spatial distributions of sulfur-rich proteins in cornifying epithelia. J Struct Biol 120:168–179

    Article  CAS  PubMed  Google Scholar 

  9. Clode PL, Saunders M, Ludwig M et al (2009) Urate deposits in symbiotic marine algae. Plant Cell Environ 32:170–177

    Article  CAS  PubMed  Google Scholar 

  10. Lipovsek S, Letofsky-Papst I, Hofer F et al (2012) Application of analytical electron microscopic methods to investigate the function of spherites in the midgut of the larval antlion Euroleon nostras (Neuroptera: Myrmeleontidae). Microsc Res Tech 75:397–407

    Article  CAS  PubMed  Google Scholar 

  11. Aranova MA, Kim YC, Pivovarova NB et al (2009) Quantitative EFTEM mapping of near physiological calcium concentrations in biological specimens. Ultramicroscopy 109:201–212

    Article  Google Scholar 

  12. Shaw JA, Clode PL, Brooker LR et al (2009) The chiton stylus canal: an element delivery pathway for tooth cusp biomineralization. J Morphol 270:588–600

    Article  PubMed  Google Scholar 

  13. Shaw JA, Clode PL, Brooker LR et al (2009) Ultrastructure of the epithelial cells associated with tooth biomineralization in the chiton Acanthopleura hirtosa. Microsc Microanal 15:154–165

    Article  CAS  PubMed  Google Scholar 

  14. Saunders M, Kong C, Shaw JA et al (2009) Characterization of biominerals in the radula teeth of the chiton, acanthopleura hirtosa. J Struct Biol 167:55–61

    Article  CAS  PubMed  Google Scholar 

  15. Usher KM, Shaw JA, Kaksonen AH et al (2010) Elemental composition of extracellular polymeric substances and granules in chalcopyrite bioleaching microbes. Hydrometallurgy 104:376–381

    Article  CAS  Google Scholar 

  16. Saunders M, Kong C, Shaw JA et al (2011) Matrix-mediated biomineralization in marine molluscs: a combined TEM and FIB approach. Microsc Microanal 17:220–225

    Article  CAS  PubMed  Google Scholar 

  17. Treiber CD, Salzer M, Riegler J et al (2012) Clusters of iron rich cells in the upper beak of the pigeon are macrophages not magnetosensitive neurons. Nature 484:367–370

    CAS  PubMed  Google Scholar 

  18. Chan EPH, Mhawi A, Clode PL et al (2009) Effects of titanium (IV) ions on human dendritic cells. Metallomics 1:166–174

    Article  CAS  PubMed  Google Scholar 

  19. Wedlock L, Kilburn M, Cliff JB et al (2011) Visualizing gold inside tumor cells following treatment with an antitumor gold(I) complex. Metallomics 3:917–925

    Article  CAS  PubMed  Google Scholar 

  20. Davis J, Heng YM, Barfels MMG et al (2000) Localization of chromophore absorption signals in TEM with an improved prism-mirror-prism filter. J Electron Microsc 49:629–639

    Article  CAS  Google Scholar 

  21. Kothleitner G, Hofer F (1998) Optimization of the signal to noise ratio in EFTEM elemental maps with regard to different ionization edge types. Micron 29:349–357

    Article  CAS  Google Scholar 

  22. Aranova MA, Leapman RD (2012) Development of electron energy-loss spectroscopy in the biological sciences. MRS Bulletin 37:53–62

    Article  Google Scholar 

  23. Echlin P (1992) Low-temperature microscopy and analysis. Plenum Press, London

    Book  Google Scholar 

  24. Ingram P, Shelburne JD, Roggli VL et al (1999) Biomedical applications of microprobe analysis. Academic, London

    Google Scholar 

  25. Steinbrecht RA, Müller M (1987) Freeze-substitution and freeze-drying. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscope. Springer, Berlin, pp 149–172

    Chapter  Google Scholar 

  26. Egerton RF (1996) Electron energy-loss spectroscopy in the electron microscope, 2nd edn. Plenum Press, New York

    Book  Google Scholar 

  27. Muller-Reichert T (ed) (2010) Electron microscopy of model systems. Academic, San Diego, USA

    Google Scholar 

  28. McDonald KL, Webb RI (2011) Freeze substitution in 3 hours or less. J Microsc (Oxford) 243:227–233

    Article  CAS  Google Scholar 

  29. Grogger W, Schaffer B, Krishnan KM et al (2003) Energy-filtering TEM at high magnification: spatial resolution and detection limits. Ultramicroscopy 96:481–489

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Saunders, M., Shaw, J.A. (2014). Biological Applications of Energy-Filtered TEM. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology, vol 1117. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-776-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-776-1_31

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-775-4

  • Online ISBN: 978-1-62703-776-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics