Skip to main content

Freeze Stabilization and Cryopreparation Technique for Visualizing the Water Distribution in Woody Tissues by X-Ray Imaging and Cryo-scanning Electron Microscopy

  • Protocol
  • First Online:
Electron Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1117))

Abstract

The protocol of freeze stabilization and cryopreparation techniques to examine the distribution of water in living tree stems by X-ray imaging and cryo-scanning electron microscopy have been developed and described. The brief procedures are as follows. Firstly, a portion of transpiring stem is frozen in the standing state with liquid nitrogen to stabilize the water that is present in the conducting tissue. After filling with liquid nitrogen, discs are then collected from the frozen portion of the stem and stored in liquid nitrogen. In a low-temperature room, the samples for X-ray imaging are sectioned with a fine handsaw, and trimmed sample blokes for cryo-scanning electron microscopy are cleanly planed using a sliding microtome. Finally, the frozen sections are irradiated in a soft X-ray apparatus, and the small blocks are examined in cryo-scanning electron microscope after freeze-etching and metal coating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sano Y, Fujikawa S, Fukazawa K (1995) Detection and features of wetwood in Quercus mongolica var. grosseserrata. Trees 9:261–268

    Article  Google Scholar 

  2. Nakada R, Fujisawa Y, Hirakawa Y (1999) Soft X-ray observation of water distribution in the stem of Cryptomeria japonica D. Don I: General description of water distribution. J Wood Sci 45:188–193

    Article  CAS  Google Scholar 

  3. Nakada R, Fujisawa Y, Hirakawa Y (1999) Soft X-ray observation of water distribution in the stem of Cryptomeria japonica D. Don II: Types found in wet-area distribution patterns in transverse sections of the stem. J Wood Sci 45:194–199

    Article  CAS  Google Scholar 

  4. Nakada R, Fujisawa Y, Yamashita K et al (2003) Changes in water distribution in heartwood along stem axes in Cryptomeria japonica. J Wood Sci 49:107–115

    Article  Google Scholar 

  5. Polge H (1978) Fifteen years of wood radiation densitometry. Wood Sci Technol 12:187–196

    Article  Google Scholar 

  6. Tanaka T, Avramidis S, Shida S (2009) Evaluation of moisture content distribution in wood by soft X-ray imaging. J Wood Sci 55:69–73

    Article  CAS  Google Scholar 

  7. Hirose S, Kume A, Takeuchi S et al (2005) Stem water transport of Lithocarpus edulis, an evergreen oak with radial-porous wood. Tree Physiol 25:221–228

    Article  PubMed  Google Scholar 

  8. Nagai S, Utsumi Y (2012) The function of intercellular spaces along the ray parenchyma in sapwood, intermediate wood and heartwood of Cryptomeria japonica (Cupressaceae). Am J Bot 99:1553–1561

    Article  PubMed  Google Scholar 

  9. Nakada R (2006) Within-stem water distribution in living trees of some conifers. IAWA J 27:313–327

    Google Scholar 

  10. Fujikawa S, Suzuki T, Ishikawa T et al (1988) Continuous observation of frozen biological materials with cryo-scanning electron microscope and freeze-replica by a new cryo-system. J Elect Microsc 37:315–322

    CAS  Google Scholar 

  11. Sano Y, Fujikawa S, Fukazawa K (1993) studies on mechanisms of frost crack formation in tree trunks. Jpn J Freezing Drying 39:13–21

    Google Scholar 

  12. Utsumi Y, Sano Y, Ohtani J et al (1996) Seasonal changes in the distribution of water in the outer growth rings of Fraxinus mandshurica var. japonica: A study by cryo-scanning electron microscopy. IAWA J 17:113–124

    Google Scholar 

  13. Utsumi Y, Sano Y, Funada R et al (2003) Seasonal and perennial changes in the distribution of water in the sapwood of conifers in a subfrigid zone. Plant Physiol 131:1826–1833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Umebayashi T, Utsumi Y, Koga S et al (2010) Xylem water-conducting patterns of 34 broadleaved evergreen trees in southern Japan. Trees 24:571–583

    Article  Google Scholar 

  15. Ohtani J, Fujikawa S (1990) Cryo-SEM observation on vessel lumina of a living tree: Ulmus davidiana var. japonica. IAWA Bull new series 11:183–194

    Google Scholar 

  16. Huang CX, Canny MJ, Oates K et al (1994) Planning frozen hydrated plant specimens for SEM observation and EDX microanalysis. Microsc Res Tech 28:67–74

    Article  CAS  PubMed  Google Scholar 

  17. Fujikawa S, Suzuki T, Sakurai S (1990) Use of micromanipulator for continuous observation of frozen samples by cryoscanning electron microscopy and freeze replicas. Scanning 12:99–106

    Article  Google Scholar 

  18. Fujikawa S, Kuroda K, Fukazawa K (1994) Ultrastructural study of deep supercooling of xylem ray parenchyma cells from Styrax obassia. Micron 25:241–252

    Article  Google Scholar 

  19. Fujikawa S, Kuroda K, Ohtani J (1996) Seasonal changes in the low-temperature behavior of xylem ray parenchyma cells in Red Osier Dogwood (Cornus sericea L.) with respect to extracellular freezing and supercooling. Micron 27:181–191

    Article  Google Scholar 

  20. Kuroda K, Ohtani J, Fujikawa S (1997) Supercooling of xylem ray parenchyma cells in tropical and subtropical hardwood species. Trees 12:97–106

    Article  Google Scholar 

  21. Kuroda K, Kasuga J, Arakawa K et al (2003) Xylem ray parenchyma cells in arboreal hardwood species respond to subfreezing temperatures by deep supercooling that is accompanied by incomplete desiccation. Plant Physiol 131:736–744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Endoh K, Kasuga J, Arakawa K et al (2009) Cryo-scanning electron microscopic study on freezing behaviors of tissue cells in dormant buds of larch (Larix kaempferi). Cryobiology 59:214–222

    Article  PubMed  Google Scholar 

  23. Nijsse JP, van Aelst A (1999) Cryo-planning for cryo-scanning electron microscopy. Scanning 21:372–378

    Article  CAS  PubMed  Google Scholar 

  24. Utsumi Y, Sano Y, Fujikawa S et al (1998) Visualization of cavitated vessels in winter and refilled vessels in spring in diffuse-porous trees by cryo-scanning electron microscopy. Plant Physiol 117:1463–1471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Utsumi Y, Sano Y, Funada R et al (1999) The progression of cavitation in earlywood vessels of Fraxinus mandshurica var. japonica during freezing and thawing. Plant Physiol 121:897–904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sakamoto Y, Sano Y (2000) Inhibition of water conductivity caused by watermark disease in Salix sachalinensis. IAWA J 21:49–60

    Article  Google Scholar 

  27. Umebayashi T, Utsumi Y, Koga S et al (2008) Conducting pathways in north temperate deciduous broadleaved trees. IAWA J 29:247–263

    Article  Google Scholar 

  28. Kuroda K, Yamashita K, Fujiwara T (2009) Cellular level observation of water loss and the refilling of tracheids in the xylem of Cryptomeria japonica during heartwood formation. Trees 23:1163–1172

    Article  CAS  Google Scholar 

  29. Dixon HH, Joly J (1894) On the ascent of sap. Ann Bot (Lond) 8:468–470

    Google Scholar 

  30. Zimmermann MH, Brown CL (1971) Trees, structure and function. Spring-Verlag, Berlin

    Google Scholar 

  31. Canny MJ (1997) Vessel contents of leaves after excision—a test of Scholander’s assumption. Am J Bot 84:1217–1222

    Article  CAS  PubMed  Google Scholar 

  32. Canny MJ (1997) Vessel contents during transpiration—embolisms and refilling. Am J Bot 84:1223–1230

    Article  CAS  PubMed  Google Scholar 

  33. McCully ME, Huang CX, Ling LEC (1998) Daily embolism and refilling of xylem vessels in the roots of field-grown maize. New Phytol 138:327–342

    Article  Google Scholar 

  34. Buchard C, McCully M, Canny M (1999) Daily embolism and refilling of root xylem vessels in three dicotyledonous crop plants. Agronomie 19:97–106

    Article  Google Scholar 

  35. Sano Y, Okamura Y, Utsumi Y (2005) Visualizing water-conduction pathways of living trees: selection of dyes and tissue preparation methods. Tree Physiol 25:269–275

    Article  PubMed  Google Scholar 

  36. Yazaki K, Sano Y, Fujikawa S et al (2010) Response to dehydration and irrigation in invasive and native saplings: osmotic adjustment versus leaf shedding. Tree Physiol 30:597–607

    Article  PubMed  Google Scholar 

  37. Cochard H, Bodet C, Ameglio T et al (2000) Cryo-Scanning electron microscopy observations of vessel content during transpiration in walnut petioles. Facts or artifacts? Plant Physiol 124:1191–1202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Canny MJ, McCully ME, Huang CX (2001) Cryo-Scanning electron microscopy observations of vessel content during transpiration in walnut petioles. Facts or artefacts? Plant Physiol Biochem 39:555–563

    Article  CAS  Google Scholar 

  39. Willson JHM, Rowe AJ (1980) Replica, shadowing and freeze-etching technique. North-Holland Pub Co., Amsterdam

    Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Seizo Fujikawa for explanations of the basics of cryo-SEM, Dr. Ryo Funada and the late Dr. Jun Ohtani for their helpful comments, Dr. Takayuki Shiraiwa, Dr. Keita Arakawa, Dr. Daisuke Takezawa, and the late Dr. Takuya Fukuzawa for use of the low-temperature room at the Institute of Low Temperature Science of Hokkaido University, and Mr. Toshiaki Itoh, Mr. Kunio Shinbori, and Mr. Shigeo Kon’no for their technical support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Utsumi, Y., Sano, Y. (2014). Freeze Stabilization and Cryopreparation Technique for Visualizing the Water Distribution in Woody Tissues by X-Ray Imaging and Cryo-scanning Electron Microscopy. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology, vol 1117. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-776-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-776-1_30

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-775-4

  • Online ISBN: 978-1-62703-776-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics