Skip to main content

FIB-SEM Tomography in Biology

  • Protocol
  • First Online:
Electron Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1117))

Abstract

Three-dimensional information is much easier to understand than a set of two-dimensional images. Therefore a layman is thrilled by the pseudo-3D image taken in a scanning electron microscope (SEM) while, when seeing a transmission electron micrograph, his imagination is challenged. First approaches to gain insight in the third dimension were to make serial microtome sections of a region of interest (ROI) and then building a model of the object. Serial microtome sectioning is a tedious and skill-demanding work and therefore seldom done. In the last two decades with the increase of computer power, sophisticated display options, and the development of new instruments, an SEM with a built-in microtome as well as a focused ion beam scanning electron microscope (FIB-SEM), serial sectioning, and 3D analysis has become far easier and faster.

Due to the relief like topology of the microtome trimmed block face of resin-embedded tissue, the ROI can be searched in the secondary electron mode, and at the selected spot, the ROI is prepared with the ion beam for 3D analysis. For FIB-SEM tomography, a thin slice is removed with the ion beam and the newly exposed face is imaged with the electron beam, usually by recording the backscattered electrons. The process, also called “slice and view,” is repeated until the desired volume is imaged.

As FIB-SEM allows 3D imaging of biological fine structure at high resolution of only small volumes, it is crucial to perform slice and view at carefully selected spots. Finding the region of interest is therefore a prerequisite for meaningful imaging. Thin layer plastification of biofilms offers direct access to the original sample surface and allows the selection of an ROI for site-specific FIB-SEM tomography just by its pronounced topographic features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seliger RL, Fleming WP (1974) Focused ion beams in microfabrication. J Appl Phys 45:1416–1422

    Article  CAS  Google Scholar 

  2. Ishitani T, Hirose H, Tsuboi H (1995) Focused-ion-beam digging of biological specimens. J Electron Microsc 44:110–114

    CAS  Google Scholar 

  3. Ishitani T, Yaguchi T (1996) Cross-sectional sample preparation by focused ion beam: a review of ion-sample interaction. Microsc Res Tech 35:320–333

    Article  CAS  PubMed  Google Scholar 

  4. Giannuzzi LA, Drown JL, Brown SR et al (1998) Applications of the FIB lift-out technique for TEM specimen preparation. Microsc Res Tech 41:285–290

    Article  CAS  PubMed  Google Scholar 

  5. Giannuzzi LA, Stevie FA (1999) A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30:197–204

    Article  Google Scholar 

  6. Overwijk MHF, van den Heuvel FC, Bulle-Lieuwma CWT (1993) Novel scheme for the preparation of transmission electron microscopy specimens with a focused ion beam. J Vac Sci Technol B 11:2021–2024

    Article  CAS  Google Scholar 

  7. Nalla RK, Porter AE, Daraio C et al (2005) Ultrastructural examination of dentin using focused ion-beam cross-sectioning and transmission electron microscopy. Micron 36:672–680

    Article  CAS  PubMed  Google Scholar 

  8. Giannuzzi LA, Phifer D, Giannuzzi NJ et al (2007) Two-dimensional and 3-dimensional analysis of bone/dental implant interfaces with the use of focused ion beam and electron microscopy. J Oral Maxillofac Surg 65:737–747

    Article  PubMed  Google Scholar 

  9. Hayles M, Stokes DJ, Phifer D et al (2006) A technique for improved focused ion beam milling of cryo-prepared life science specimens. J Microsc (Oxford) 226:263–269

    Article  Google Scholar 

  10. Marko M, Hsieh CE, Schalek R et al (2007) Focused-ion-beam thinning of frozen hydrated biological specimens for cryoelectron microscopy. Nat Methods 4:215–217

    Article  CAS  PubMed  Google Scholar 

  11. Marko M, Hsieh CE, Moberlychan W et al (2006) Focused ion beam milling of vitreous water: prospects for an alternative to cryo-ultramicrotomy of frozen-hydrated biological samples. J Microsc (Oxford) 222:42–47

    Article  CAS  Google Scholar 

  12. Rigort A, Bäuerlein FJB, Villa E et al (2012) Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc Natl Acad Sci U S A 109:4449–4454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Rubino S, Akhtar S, Melin P et al (2012) A site-specific focused-ion-beam lift-out method for cryo transmission electron microscopy. J Struct Biol 180:572–576

    Article  PubMed  Google Scholar 

  14. Drobne D, Milani M, Ballerini M et al (2004) Focused ion beam for microscopy and in situ sample preparation: application on a crustacean digestive system. J Biomed Opt 9:1238–1243

    Article  PubMed  Google Scholar 

  15. Drobne D, Milani M, Lešer V et al (2008) Imaging of intracellular spherical lamellar structures and tissue gross morphology by a focused ion beam/scanning electron microscope (FIB/SEM). Ultramicroscopy 108:663–670

    Article  CAS  PubMed  Google Scholar 

  16. Drobne D, Milani M, Zrimec A et al (2005) Electron and ion imaging of gland cells using the FIB/SEM system. J Microsc (Oxford) 219:29–35

    Article  CAS  Google Scholar 

  17. Drobne D, Milani M, Zrimec A et al (2005) Focused ion beam/scanning electron microscopy studies of Porcellio scaber (Isopoda, Crustacea) digestive gland epithelium cells. Scanning 27:30–34

    Article  PubMed  Google Scholar 

  18. Greve F, Frerker S, Bittermann AG et al (2007) Molecular design and characterization of the neuro-microelectrode array interface. Biomaterials 28:5246–5258

    Article  CAS  PubMed  Google Scholar 

  19. Inkson BJ, Mulvihill M, Möbus G (2001) 3D determination of grain shape in a FeAl-based nanocomposite by 3D FIB tomography. Scr Mater 45:753–58

    Article  CAS  Google Scholar 

  20. Holzer L, Indutnyi F, Gasser PH et al (2004) Three-dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography. J Microsc 216:84–95

    Article  CAS  PubMed  Google Scholar 

  21. Heymann JAW, Hayles M, Gestmann I et al (2006) Site-specific 3D imaging of cells and tissues with a dual beam microscope. J Struct Biol 155:63–73

    Article  PubMed Central  PubMed  Google Scholar 

  22. Knott G, Marchman H, Wall D et al (2008) Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28:2959–2964

    Article  CAS  PubMed  Google Scholar 

  23. De Winter DAM, Schneijdenberg CTWM, Lebbink MN et al (2009) Tomography of insulating biological and geological materials using focused ion beam (FIB) sectioning and low kV BSE imaging. J Microsc (Oxford) 233:372–383

    Article  Google Scholar 

  24. Hekking LHP, Lebbink MN, De Winter DAM et al (2009) Focused ion beam-scanning electron microscope: exploring large volumes of atherosclerotic tissue. J Microsc (Oxford) 235:336–347

    Article  CAS  Google Scholar 

  25. Heymann JAW, Shi D, Kim S et al (2009) 3D Imaging of mammalian cells with ion-abrasion scanning electron microscopy. J Struct Biol 166:1–7

    Article  CAS  PubMed  Google Scholar 

  26. Schroeder-Reiter E, Pérez-Willard F, Zeile U et al (2009) The osmium tetroxide-potassium ferrocyanide (OsFeCN) staining technique for electron microscopy: a critical evaluation using ciliates, algae, mosses, and higher plants. J Struct Biol 165:97–106

    Article  CAS  PubMed  Google Scholar 

  27. Lamers E, Walboomers XF, Domanski M et al (2011) Cryo DualBeam focused ion beam-scanning electron microscopy to evaluate the interface between cells and nanopatterned scaffolds. Tissue Eng Part C Methods 17:1–7

    Article  CAS  Google Scholar 

  28. Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2:1900–1909

    CAS  Google Scholar 

  29. Kosinski M, McDonald K, Schwartz J et al (2005) C. elegans sperm bud vesicles to deliver a meiotic maturation signal to distant oocytes. Development 132:3357–3369

    Article  CAS  PubMed  Google Scholar 

  30. Pellettieri J, Fitzgerald P, Watanabe S et al (2010) Cell death and tissue remodeling in planarian regeneration. Dev Biol 338:76–85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Rouquette J, Genoud C, Vazquez-Nin GH et al (2009) Revealing the high-resolution three-dimensional network of chromatin and interchromatin space: a novel electron-microscopic approach to reconstructing nuclear architecture. Chromosome Res 17:801–810

    Article  CAS  PubMed  Google Scholar 

  32. Loussert C, Forestier C-L, Humbel BM (2012) Correlative light and electron microscopy in parasite research. Methods Cell Biol 111:59–73

    Article  CAS  PubMed  Google Scholar 

  33. Lucas MS, Günthert M, Gasser P et al (2012) Bridging microscopes: 3D correlative light and scanning electron microscopy of complex biological structures. Methods Cell Biol 111:325–356

    Article  CAS  PubMed  Google Scholar 

  34. Bittermann AG, Schaer D, Mitsi M et al. (2012) Thin layer plastification vs. block embedding: two alternative preparation strategies for 3D-imaging of cultured cells and biofilms by FIB/SEM. In: Society EM (ed) European Microscopy Conference 2012. Wiley, Manchester

    Google Scholar 

  35. Schnepf E, Hausmann K, Herth W (1982) The osmium tetroxide-potassium ferrocyanide (OsFeCN) staining technique for electron microscopy: a critical evaluation using ciliates, algae, mosses, and higher plants. Histochemistry 76:261–271

    Article  CAS  PubMed  Google Scholar 

  36. Stäubli W (1963) A new embedding technique for electron microscopy, combining a water-soluble epoxy resin (Durcupan) with water-insoluble Araldite. J Cell Biol 16:197–201

    Article  Google Scholar 

  37. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  CAS  PubMed  Google Scholar 

  38. Craig EL, Frajola WJ, Greider MH (1962) An embedding technique for electron microscopy using EPON 812. J Cell Biol 12:190–194

    Article  CAS  PubMed  Google Scholar 

  39. Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Humbel BM, Schwarz H (1989) Freeze-substitution for immunochemistry. In: Verkleij AJ, Leunissen JLM (eds) Immuno-gold labeling in cell biology. CRC, Boca Raton, pp 115–134

    Google Scholar 

  41. Steinbrecht RA, Müller M (1987) Freeze-substitution and freeze-drying. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin, pp 149–172

    Chapter  Google Scholar 

  42. Müller M, Moor H (1984) Cryofixation of thick specimens by high pressure freezing. In: Revel JP, Barnard T, Haggis GH (eds) Science of biological specimen preparation 1983. SEM Inc., AMF O'Hare, IL, pp 131–138

    Google Scholar 

  43. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76

    Article  CAS  PubMed  Google Scholar 

  44. Collins TJ (2007) ImageJ for microscopy. Biotechniques 43:S25–S30

    Article  Google Scholar 

  45. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676–682

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Roger Wepf, EMEZ, ETH Zürich, for his general support. We cherish the cooperation with PD Dr. Heike Hall, d-MATL, ETH Zürich, who passed away last year. We thank Dr. Thomas Hefti, Thommen Medical AG, Waldenburg, Switzerland, for the osteoclast-on-bone cultures and Dr. Tessa Lühmann, Pharmazie, Universität Würzburg, for her work on the FIB-SEM. The authors also acknowledge the financial support by the Faculty of Biology and Medicine of the University of Lausanne and Prof. E. Welker, DNF, UNIL, for submitting the R'Equip grant 316030_128692 to the Swiss National Science Foundation and for blowing new life into EMF. We also would like to thank Prof. D. Mastronarde, University of Colorado, Boulder, for the IMOD list and the uncountable hints and help for the IMOD software; Dr. Chengge Jiao, FEI Company, Eindhoven, the Netherlands, for the FIB instructions and the suggestion of the optimized sample geometry; and last but not least Dr. Céline Loussert, EMF, UNIL, for samples, valuable discussions, and her encouragement.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Kizilyaprak, C., Bittermann, A.G., Daraspe, J., Humbel, B.M. (2014). FIB-SEM Tomography in Biology. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology, vol 1117. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-776-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-776-1_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-775-4

  • Online ISBN: 978-1-62703-776-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics