Advertisement

Mutation Screening of the TP53 Gene by Temporal Temperature Gel Electrophoresis (TTGE)

  • Therese Sørlie
  • Hilde Johnsen
  • Phuong Vu
  • Guro Elisabeth Lind
  • Ragnhild Lothe
  • Anne-Lise Børresen-Dale
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1105)

Abstract

A protocol for detection of mutations in the TP53 gene using temporal temperature gradient electrophoresis (TTGE) is described. TTGE is a mutation detection technique that separates DNA fragments differing by single base pairs according to their melting properties in a denaturing gel. It is based on constant denaturing conditions in the gel combined with a temperature gradient during the electrophoretic run. This method combines some of the advantages of the related techniques, denaturing gradient gel electrophoresis and constant denaturant gel electrophoresis, and eliminates some of the problems. The result is a rapid and sensitive screening technique which is robust and easily set up in smaller laboratory environments.

Key words

TP53 TTGE DGGE CDGE Mutation screening 

References

  1. 1.
    Hernandez-Boussard T, Montesano R, Hainaut P (1999) Sources of bias in the detection and reporting of p53 mutations in human cancer: analysis of the IARC p53 mutation database. Genet Anal 14:229–233PubMedCrossRefGoogle Scholar
  2. 2.
    Olivier M, Eeles R, Hollstein M et al (2002) The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19:607–614PubMedCrossRefGoogle Scholar
  3. 3.
    Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2:a001008PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R, Sørlie T, Hovig E, Smith-Sorensen B, Montesano R, Harris CC (1994) Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 22:3551–3555PubMedCentralPubMedGoogle Scholar
  5. 5.
    Hussain SP, Hofseth LJ, Harris CC (2001) Tumor suppressor genes: at the crossroads of molecular carcinogenesis, molecular epidemiology and human risk assessment. Lung Cancer 34(suppl 2):S7–S15PubMedCrossRefGoogle Scholar
  6. 6.
    Martin AC, Facchiano AM, Cuff AL et al (2002) Integrating mutation data and structural analysis of the TP53 tumor-suppressor protein. Hum Mutat 19:149–164PubMedCrossRefGoogle Scholar
  7. 7.
    Soussi T, Beroud C (2002) Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 1:233–240CrossRefGoogle Scholar
  8. 8.
    Tyner SD, Venkatachalam S, Choi J et al (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415:45–53PubMedCrossRefGoogle Scholar
  9. 9.
    Aas T, Børresen A-L, Geisler S et al (1996) Specific p53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 2:811–814PubMedCrossRefGoogle Scholar
  10. 10.
    Børresen-Dale A-L, Lothe RA, Meling GI, Hainaut P, Rognum TO, Skovlund E (1998) TP53 and long-term prognosis in colorectal cancer: mutations in the L3 zinc-binding domain predict poor survival. Clin Cancer Res 4:203–210PubMedGoogle Scholar
  11. 11.
    Geisler S, Lønning PE, Aas T et al (2001) Influence of TP53 gene alterations and c-erbB2 expression on the response to treatment with doxorubicin in locally advanced breast cancer. Cancer Res 61:2505–2512PubMedGoogle Scholar
  12. 12.
    Wallace-Brodeur RR, Lowe SW (1999) Clinical implications of p53 mutations. Cell Mol Life Sci 55:64–75PubMedCrossRefGoogle Scholar
  13. 13.
    Wattel E, Preudhomme C, Hecquet B et al (1994) p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood 84:3148–3157PubMedGoogle Scholar
  14. 14.
    Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A 86:2766–2770PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874–879PubMedCrossRefGoogle Scholar
  16. 16.
    Fischer SG, Lerman LS (1983) DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci U S A 80:1579–1583PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Børresen A-L, Hovig E, Smith-Sorensen B et al (1991) Constant denaturant gel electrophoresis as a rapid screening technique for p53 mutations. Proc Natl Acad Sci U S A 88: 8405–8409PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Hovig E, Smith-Sorensen B, Brogger A, Børresen A-L (1991) Constant denaturant gel electrophoresis, a modification of denaturing gradient gel electrophoresis, in mutation detection. Mutat Res 262:63–71 [Published erratum: Mutat Res 263, 61]PubMedCrossRefGoogle Scholar
  19. 19.
    Bjorheim J, Gaudernack G, Ekstrom PO (2001) Mutation analysis of TP53 exons 5–8 by automated constant denaturant capillary electrophoresis. Tumour Biol 22:323–327PubMedCrossRefGoogle Scholar
  20. 20.
    Khrapko K, Hanekamp JS, Thilly WG, Belenkii A, Foret F, Karger BL (1994) Constant denaturant capillary electrophoresis (CDCE): a high resolution approach to mutational analysis. Nucleic Acids Res 22:364–369PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Sarkar G, Yoon HS, Sommer SS (1992) Dideoxy fingerprinting (ddE): a rapid and efficient screen for the presence of mutations. Genomics 13:441–443PubMedCrossRefGoogle Scholar
  22. 22.
    Gelfi C, Cremonesi L, Ferrari M, Righetti PG (1996) Temperature-programmed capillary electrophoresis for detection of DNA point mutations. Biotechniques 21:926–928, 930, 932PubMedGoogle Scholar
  23. 23.
    Riesner D, Steger G, Zimmat R et al (1989) Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. Electrophoresis 10:377–389PubMedCrossRefGoogle Scholar
  24. 24.
    Børresen-Dale A-L, Lystad S, Langeroed A (1997) Temporal temperature gradient electrophoresis on the DCode system. Biorad Bull 2133:8Google Scholar
  25. 25.
    Zoller P, Redila-Flores T, Chu D, Patel A (1998) Temporal temperature gradient electrophoresis: a powerful technique to screen mutations. Biomedical Products 9. (http://www.biocompare.com/Application-Notes/42665-Temporal-Temperature-Gradient-Electrophoresis-A-Powerful-Technique-To-Screen-Mutations/)
  26. 26.
    Lerman LS, Silverstein K (1987) Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods Enzymol 155:482–501PubMedCrossRefGoogle Scholar
  27. 27.
    Børresen A-L (1996) Constant denaturant gel electrophoresis (CDGE) in mutation screening. In: Pfeifer GP (ed) Technologies for detection of DNA damage and mutation. Plenum, New York, pp 267–279CrossRefGoogle Scholar
  28. 28.
    Kraggerud SM, Szymanska J, Abeler VM et al (2000) DNA copy number changes in malignant ovarian germ cell tumors. Cancer Res 60: 3025–3030PubMedGoogle Scholar
  29. 29.
    Sheffield VC, Cox DR, Lerman LS, Myers RM (1989) Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci U S A 86: 232–236PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Guldberg P, Nedergaard T, Nielsen HJ, Olsen AC, Ahrenkiel V, Zeuthen J (1997) Single-step DGGE-based mutation scanning of the p53 gene: application to genetic diagnosis of colorectal cancer. Hum Mutat 9:348–355PubMedCrossRefGoogle Scholar
  31. 31.
    Steger G (1994) Thermal denaturation of double-stranded nucleic acids: prediction of temperatures critical for gradient gel electrophoresis and polymerase chain reaction. Nucleic Acids Res 22:2760–2768PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2014

Authors and Affiliations

  • Therese Sørlie
    • 1
  • Hilde Johnsen
    • 1
  • Phuong Vu
    • 1
  • Guro Elisabeth Lind
    • 1
  • Ragnhild Lothe
    • 1
  • Anne-Lise Børresen-Dale
    • 1
  1. 1.Department of GeneticsOslo University Hospital The Norwegian Radium Hospital, Institute for Cancer ResearchOsloNorway

Personalised recommendations