Skip to main content

Flow Cytometric Quantification of Mutant T Cells with Altered Expression of the T-Cell Receptor: Detecting Somatic Mutants in Humans and Mice

  • Protocol
  • First Online:
Molecular Toxicology Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1105))

Abstract

Spontaneously generated mutant T cells defective in T-cell receptor (TCR) gene expression are detectable at the frequency of 2×10−4 in vivo, and the mutant fractions are dose dependently increased by exposure to genotoxic agents such as ionizing radiation. Mutant cells with altered expression of TCRα or -β among CD4+ T cells can be detected as CD3/CD4+ cells by two-color flow cytometry using anti-CD3 and anti-CD4 monoclonal antibodies labeled with different fluorescent dyes, because incomplete TCRαβ/CD3 complexes cannot be transported to the cellular membrane. This flow cytometric mutation assay can be applied to CD4+ T cells from human peripheral blood and mouse spleen. Methods for both preparation of target cells and detection of the mutant cells are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cole J, Skopek TR (1994) Somatic mutant frequency, mutation rates and mutational spectra in the human population in vivo. Mutat Res 304:33–105

    Article  CAS  PubMed  Google Scholar 

  2. Kyoizumi S, Akiyama M, Hirai Y, Kusunoki Y, Tanabe K, Umeki S (1990) Spontaneous loss and alteration of antigen receptor expression in mature CD4+ T cells. J Exp Med 171:1981–1999

    Article  CAS  PubMed  Google Scholar 

  3. Umeki S, Suzuki T, Kusunoki Y, Seyama T, Fujita S, Kyoizumi S (1997) Development of a mouse model for studying in vivo T-cell receptor mutations. Mutat Res 393:37–46

    Article  CAS  PubMed  Google Scholar 

  4. Davodeau F, Peyrat MA, Romagne F et al (1995) Dual T cell receptor beta chain expression on human T lymphocytes. J Exp Med 181:1391–1398

    Article  CAS  PubMed  Google Scholar 

  5. Padovan E, Casorati G, Dellabona P, Meyer S, Brockhaus M, Lanzavecchia A (1993) Expression of two T cell receptor alpha chains: dual receptor T cells. Science 262:422–424

    Article  CAS  PubMed  Google Scholar 

  6. Malissen M, Trucy J, Jouvin-Marche E, Cazenave PA, Scollay R, Malissen B (1992) Regulation of TCR alpha and beta gene allelic exclusion during T-cell development. Immunol Today 13:315–322

    Article  CAS  PubMed  Google Scholar 

  7. Clevers H, Alarcon B, Wileman T, Terhorst C (1988) The T cell receptor/CD3 complex: a dynamic protein ensemble. Annu Rev Immunol 6:629–662

    Article  CAS  PubMed  Google Scholar 

  8. Akiyama M, Kyoizumi S, Hirai Y, Kusunoki Y, Iwamoto KS, Nakamura N (1995) Mutation frequency in human blood cells increases with age. Mutat Res 338:141–149

    Article  CAS  PubMed  Google Scholar 

  9. Kyoizumi S, Umeki S, Akiyama M et al (1992) Frequency of mutant T lymphocytes defective in the expression of the T-cell antigen receptor gene among radiation-exposed people. Mutat Res 265:173–180

    Article  CAS  PubMed  Google Scholar 

  10. Saenko AS, Zamulaeva IA, Smirnova SG et al (1998) Determination of somatic mutant frequencies at glycophorin A and T-cell receptor loci for biodosimetry of prolonged irradiation. Int J Radiat Biol 73:613–618

    Article  CAS  PubMed  Google Scholar 

  11. Lantelme E, Mantovani S, Palermo B et al (2000) Increased frequency of RAG-expressing, CD4(+)CD3(low) peripheral T lymphocytes in patients with defective responses to DNA damage. Eur J Immunol 30:1520–1525

    Article  CAS  PubMed  Google Scholar 

  12. Mei N, Kunugita N, Nomoto S, Norimura T (1996) Comparison of the frequency of T-cell receptor mutants and thioguanine resistance induced by X-rays and ethylnitrosourea in cultured human blood T-lymphocytes. Mutat Res 357:191–197

    Article  PubMed  Google Scholar 

  13. Iwamoto KS, Mizuno T, Ito T, Tsuyama N, Kyoizumi S, Seyama T (1996) Gain-of-function p53 mutations enhance alteration of the T-cell receptor following X-irradiation, independently of the cell cycle and cell survival. Cancer Res 56:3862–3865

    CAS  PubMed  Google Scholar 

  14. Ishioka N, Umeki S, Hirai Y et al (1997) Stimulated rapid expression in vitro for early detection of in vivo T-cell receptor mutations induced by radiation exposure. Mutat Res 390:269–282

    Article  CAS  PubMed  Google Scholar 

  15. Iwamoto KS, Hirai Y, Umeki S et al (1994) A positive correlation between T-cell-receptor mutant frequencies and dicentric chromosome frequencies in lymphocytes from radiotherapy patients. J Radiat Res 35:92–103

    Article  CAS  PubMed  Google Scholar 

  16. Hirota H, Kubota M, Adachi S et al (1994) Somatic mutations at T-cell antigen receptor and glycophorin A loci in pediatric leukemia patients following chemotherapy: comparison with HPRT locus mutation. Mutat Res 315: 95–103

    Article  CAS  PubMed  Google Scholar 

  17. Lanza A, Robustelli della Cuna FS, Zibera C, Pedrazzoli P, Robustelli della Cuna G (1999) Somatic mutations at the T-cell antigen receptor in antineoplastic drug-exposed populations: comparison with sister chromatid exchange frequency. Int Arch Occup Environ Health 72:315–322

    Article  CAS  PubMed  Google Scholar 

  18. Umeki S, Kyoizumi S, Kusunoki Y et al (1991) Flow cytometric measurements of somatic cell mutations in Thorotrast patients. Jpn J Cancer Res 82:1349–1353

    Article  CAS  PubMed  Google Scholar 

  19. Akleyev AV, Kossenko MM, Silkina LA et al (1995) Health effects of radiation incidents in the southern Urals. Stem Cells 13(Suppl 1):58–68

    PubMed  Google Scholar 

  20. Veremeyeva G, Akushevich I, Pochukhailova T et al (2010) Long-term cellular effects in humans chronically exposed to ionizing radiation. Health Phys 99:337–346

    Article  CAS  PubMed  Google Scholar 

  21. Taooka Y, Takeichi N, Noso Y, Kawano N, Apsalikov KN, Hoshi M (2006) Increased T-cell receptor mutation frequency in radiation-exposed residents living near the Semipalatinsk nuclear test site. J Radiat Res 47(Suppl A):A179–A181

    Article  CAS  PubMed  Google Scholar 

  22. Umeki S, Kusunoki Y, Cologne JB et al (1998) Lifespan of human memory T-cells in the absence of T-cell receptor expression. Immunol Lett 62:99–104

    Article  CAS  PubMed  Google Scholar 

  23. Vershenya S, Biko J, Drozd V, Lorenz R, Reiners C, Hempel K (2004) Dose response for T-cell receptor (TCR) mutants in patients repeatedly treated with 131I for thyroid cancer. Mutat Res 548:27–33

    Article  CAS  PubMed  Google Scholar 

  24. Kyoizumi S, Kusunoki Y, Seyama T, Hatamochi A, Goto M (1998) In vivo somatic mutations in Werner’s syndrome. Hum Genet 103:405–410

    Article  CAS  PubMed  Google Scholar 

  25. Kusunoki Y, Hayashi T, Hirai Y et al (1994) Increased rate of spontaneous mitotic recombination in T lymphocytes from a Bloom’s syndrome patient using a flow-cytometric assay at HLA-A locus. Jpn J Cancer Res 85:610–618

    Article  CAS  PubMed  Google Scholar 

  26. Suzuki T, Kusunoki Y, Tsuyama N, Ohnishi H, Seyama T, Kyoizumi S (2001) Elevated in vivo frequencies of mutant T cells with altered functional expression of the T-cell receptor or hypoxanthine phosphoribosyltransferase genes in p53-deficient mice. Mutat Res 483:13–17

    Article  CAS  PubMed  Google Scholar 

  27. Igari K, Igari Y, Okazaki R, Kato F, Ootsuyama A, Norimura T (2006) The delayed manifestation of T-cell receptor (TCR) variants in X-irradiated mice depends on Trp53 status. Radiat Res 166:55–60

    Article  CAS  PubMed  Google Scholar 

  28. Shallow SO (1999) Overview of flow cytometry. In: Coligan JE, Kruisbreek AM, Margulies DH, Shevach EM, Strober W (eds) Current protocols in immunology. Wiley, New York, Units 5.1 and 5.2

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge M. Yamaoka and K. Koyama for excellent technical help and C. A. Waldren for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seishi Kyoizumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Humana Press

About this protocol

Cite this protocol

Kyoizumi, S., Kusunoki, Y., Hayashi, T. (2014). Flow Cytometric Quantification of Mutant T Cells with Altered Expression of the T-Cell Receptor: Detecting Somatic Mutants in Humans and Mice. In: Keohavong, P., Grant, S. (eds) Molecular Toxicology Protocols. Methods in Molecular Biology, vol 1105. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-739-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-739-6_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-738-9

  • Online ISBN: 978-1-62703-739-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics