Skip to main content

Pulsed-Field Gel Electrophoresis Analysis of Multicellular DNA Double-Strand Break Damage and Repair

  • Protocol
  • First Online:
Molecular Toxicology Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1105))

  • 4048 Accesses

Abstract

This assay quantifies the extent of double-strand break (DSB) DNA damage in cell populations embedded in agarose and analyzed for migratory DNA using pulsed-field gel electrophoresis with ethidium bromide staining. The assay can measure preexisting damage as well as induction of DSB by chemical (e.g., bleomycin), physical (e.g., X-irradiation), or biological (e.g., restriction enzymes) agents. By incubating the cells under physiological conditions prior to processing, the cells can be allowed to repair DSB, primarily via the process of nonhomologous end joining. The amount of repair, corresponding to the repair capacity of the treated cells, is then quantified by determining the ratio of the fractions of activity released in the lanes in comparison to the total amount of DNA fragmentation following determination of an optimal exposure for maximum initial fragmentation. Repair kinetics can also be analyzed through a time-course regimen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett CB, Lewis AL, Baldwin KK, Resnick MA (1993) Lethality induced by a single site-specific double-strand break in dispensable yeast plasmid. Proc Natl Acad Sci U S A 90:5613–5617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Stewart RD (2001) Two-lesion kinetic model of double-strand break rejoining and cell killing. Radiat Res 156:365–378

    Article  CAS  PubMed  Google Scholar 

  3. Sakata K, Someya M, Matsumoto Y, Hareyama M (2007) Ability to repair DNA double-strand breaks related to cancer susceptibility and radiosensitivity. Radiat Med 25:433–438

    Article  CAS  PubMed  Google Scholar 

  4. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantification of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  5. Speit G, Hartmann A (2005) The comet assay. Meth Mol Biol 291:85–95

    CAS  Google Scholar 

  6. Chaubey RC (2005) Computerized image analysis software for the comet assay. Meth Mol Biol 291:97–106

    CAS  Google Scholar 

  7. Hazlehurst LA (2009) Detection of DNA damage induced by topoisomerase II inhibitors, gamma radiation and crosslinking agents using the Comet assay. Meth Mol Biol 523:169–176

    Article  CAS  Google Scholar 

  8. Glei M, Hovhannisyan G, Pool-Zobel BL (2009) Use of Comet-FISH in the study of DNA damage and repair: review. Mutat Res 681:33–43

    Article  CAS  PubMed  Google Scholar 

  9. Speit G, Hartmann A (1995) The contribution of excision repair to the DNA-effects seen in the alkaline single cell gel test (comet assay). Mutagenesis 10:555–559

    Article  CAS  PubMed  Google Scholar 

  10. DiBiase SJ, Guan J, Curran WJ Jr, Iliakis G (1999) Repair of DNA double-strand breaks and radiosensitivity to killing in an isogenic group of p53 mutant cell lines. Int J Radiat Oncol Biol Phys 45:743–751

    Article  CAS  PubMed  Google Scholar 

  11. Pfeiffer P, Vielmetter W (1988) Joining of nonhomologous DNA double strand breaks in vitro. Nucleic Acids Res 16:907–924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lehman CW, Clemens M, Worthylake DK, Trautman JK, Carroll D (1993) Homologous and illegitimate recombination in developing Xenopus oocytes and eggs. Mol Cell Biol 13:6897–6906

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Feldmann E, Schmiemann V, Goeddecke W, Reichenberger S, Pfeiffer P (2000) DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic Acids Res 28:2585–2596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. North P, Ganesh A, Tacker J (1990) The rejoining of double-strand breaks in DNA by human cell extracts. Nucleic Acids Res 18:6205–6210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ganesh A, North P, Tacker J (1993) Repair and misrepair of site-specific DNA double-strand breaks by human cell extracts. Mutat Res 299:251–259

    Article  CAS  PubMed  Google Scholar 

  16. Boe SO, Sodroski J, Helland DE, Farnet CM (1995) DNA end-joining in extracts from human cells. Biochem Biophys Res Commun 215:987–993

    Article  CAS  PubMed  Google Scholar 

  17. Khanna KK, Jackson SP (2002) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254

    Article  Google Scholar 

  18. Weaver DT (1995) What to do at an end: DNA double-strand-break repair. Trends Genet 10:388–392

    Article  Google Scholar 

  19. Valerie K, Povirk LF (2003) Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22:5792–5812

    Article  CAS  PubMed  Google Scholar 

  20. Rathmell WK, Chu G (1998) Mechanisms for DNA double-strand break repair in eukaryotes. In: Nickoloff JA, Hoekstra MF (eds) DNA damage and repair, volume II: DNA repair in higher eukaryotes. Humana, Totawa, NJ, pp 299–316

    Chapter  Google Scholar 

  21. Cheong N, Perrault AR, Iliakis G (1998) In vitro rejoining of DNA double-strand-breaks: a comparison of genomic DNA with plasmid DNA-based assays. Int J Radiat Biol 73: 481–493

    Article  CAS  PubMed  Google Scholar 

  22. Iliakis G, Metzger L, Denko N, Stamato TD (1991) Detection of DNA double-strand breaks in synchronous cultures of CHO cells by means of asymmetric field inversion gel electrophoresis. Int J Radiat Biol 59:321–341

    Article  CAS  PubMed  Google Scholar 

  23. DiBiase SJ, Zeng ZC, Chen R, Hyslop T, Curran WJ, Iliakis G (2000) DNA-dependent protein kinase stimulates an independent active, nonhomologous, end-joining apparatus. Cancer Res 60:1245–1253

    CAS  PubMed  Google Scholar 

  24. Nachsberger PR, Li WH, Guo M et al (1999) Rejoining of DNA double strand breaks in Ku80-deficient mouse fibroblasts. Radiat Res 151:398–407

    Article  Google Scholar 

  25. Howlett NG, Taniguchi T, Olson S et al (2002) Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297:606–609

    Article  CAS  PubMed  Google Scholar 

  26. D’Andrea AD, Grompe M (2003) The Fanconi anaemia/BRCA pathway. Nat Rev Cancer 3:23–34

    Article  PubMed  Google Scholar 

  27. Xia F, Taghian DG, DeFrank JS et al (2001) Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal non-homologous end joining. Proc Natl Acad Sci U S A 98:8644–8649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Trenz K, Schütz P, Speit G (2005) Radiosensitivity of lymphoblastoid cell lines with a heterozygous BRCA1 mutation is not detected by the comet assay and pulsed field gel electrophoresis. Mutagenesis 20:131–137

    Article  CAS  PubMed  Google Scholar 

  29. Casado JA, Núñez MI, Segovia JC, de Almodóvar R, Bueren JA (2005) Non-homologous end-joining defect in Fanconi anemia hematopoietic cells exposed to ionizing radiation. Radiat Res 164:635–641

    Article  CAS  PubMed  Google Scholar 

  30. Kusumoto R, Dawut L, Marchetti C et al (2008) Werner protein cooperates with the XRCC4-DNA ligase IV complex in end-processing. Biochemistry 47:7548–7556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Wang Y, Smith K, Waldman BC, Waldman AS (2011) Depletion of the Bloom syndrome helicase stimulates homology-dependent repair at double-strand breaks in human chromosomes. DNA Repair 10:416–426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Oksenych V, Alt FW, Kumar V et al (2012) Functional redundancy between repair factor XLF and damage response mediator 53BP1 in V(D)J recombination and DNA repair. Proc Natl Acad Sci U S A 109:2455–2460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Sarkaria JN, Bush C, Eady JJ, Peacock JH, Steel GG, Yarnold JR (1998) Comparison between pulsed-field gel electrophoresis and the comet assay as predictive assays for radiosensitivity in fibroblasts. Radiat Res 150:17–22

    Article  CAS  PubMed  Google Scholar 

  34. Woudstra EC, Driessen C, Konings AW, Kampinga HH (1998) DNA damage induction and tumour cell radiosensitivity: PFGE and halo measurements. Int J Radiat Biol 73:495–502

    Article  CAS  PubMed  Google Scholar 

  35. El-Awady RA, Dikomey E, Dahm-Daphi J (2003) Radiosensitivity of human tumour cells is correlated with the induction but not the repair of DNA double-strand breaks. Br J Cancer 89:593–601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Heacock ML, Stefanick DF, Horton JK, Wilson SH (2010) Alkylation DNA damage in combination with PARP inhibition results in formation of S-phase-dependent double-strand breaks. DNA Repair 9:929–936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Olive PL (1989) Cell proliferation as a requirement for development of contact effect in Chinese hamster V79 spheroids. Radiat Res 117:79–92

    Article  CAS  PubMed  Google Scholar 

  38. Pastwa E, Neumann RD, Mezhevaya K, Winters TA (2003) Repair of radiation-induced DNA double-strand breaks is dependent upon radiation quality and the structural complexity of double-strand breaks. Radiat Res 159:251–261

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Grant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Humana Press

About this protocol

Cite this protocol

Joshi, N., Grant, S.G. (2014). Pulsed-Field Gel Electrophoresis Analysis of Multicellular DNA Double-Strand Break Damage and Repair. In: Keohavong, P., Grant, S. (eds) Molecular Toxicology Protocols. Methods in Molecular Biology, vol 1105. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-739-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-739-6_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-738-9

  • Online ISBN: 978-1-62703-739-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics