Skip to main content

DNA Isolation and Sample Preparation for Quantification of Adduct Levels by Accelerator Mass Spectrometry

  • Protocol
  • First Online:
Molecular Toxicology Protocols

Abstract

Accelerator mass spectrometry (AMS) is a highly sensitive technique used for the quantification of adducts following exposure to carbon-14- or tritium-labeled chemicals, with detection limits in the range of one adduct per 1011–1012 nucleotides. The protocol described in this chapter provides an optimal method for isolating and preparing DNA samples to measure isotope-labeled DNA adducts by AMS. When preparing samples, special precautions must be taken to avoid cross-contamination of isotope among samples and produce a sample that is compatible with AMS. The DNA isolation method described is based upon digestion of tissue with proteinase K, followed by extraction of DNA using Qiagen isolation columns. The extracted DNA is precipitated with isopropanol, washed repeatedly with 70 % ethanol to remove salt, and then dissolved in water. DNA samples are then converted to graphite or titanium hydride and the isotope content measured by AMS to quantify adduct levels. This method has been used to reliably generate good yields of uncontaminated, pure DNA from animal and human tissues for analysis of adduct levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weisburger JH, Williams GM (1981) Carcinogen testing: current problems and new approaches. Science 214:401–407

    Article  CAS  PubMed  Google Scholar 

  2. Meek ME (2008) Recent developments in frameworks to consider human relevance of hypothesized modes of action for tumours in animals. Environ Mol Mutagen 49:110–116

    Article  CAS  PubMed  Google Scholar 

  3. Phillips DH (2005) DNA adducts as markers of exposure and risk. Mutat Res 577:284–292

    Article  CAS  PubMed  Google Scholar 

  4. Poirier MC, Santella RM, Weston A (2000) Carcinogen macromolecular adducts and their measurement. Carcinogenesis 21:353–359

    Article  CAS  PubMed  Google Scholar 

  5. Farmer PB, Brown K, Tompkins E et al (2005) DNA adducts: mass spectrometry methods and future prospects. Toxicol Appl Pharmacol 207: 293–301

    Article  CAS  PubMed  Google Scholar 

  6. Turteltaub KW, Dingley KH (1998) Application of accelerated mass spectrometry (AMS) in DNA adduct quantification and identification. Toxicol Lett 102–103:435–439

    Article  PubMed  Google Scholar 

  7. Lightfoot TJ, Coxhead JM, Cupid BC, Nicholson S, Garner RC (2000) Analysis of DNA adducts by accelerator mass spectrometry in human breast tissue after administration of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and benzo[a]pyrene. Mutat Res 472: 119–127

    Article  CAS  PubMed  Google Scholar 

  8. Turteltaub KW, Vogel JS (2000) Bioanalytical applications of accelerator mass spectrometry for pharmaceutical research. Curr Pharm Des 6:991–1007

    Article  CAS  PubMed  Google Scholar 

  9. Dingley KH, Roberts ML, Velsko CA, Turteltaub KW (1998) Attomole detection of 3H in biological samples using accelerator mass spectrometry: application in low-dose, dual-isotope tracer studies in conjunction with 14C accelerator mass spectrometry. Chem Res Toxicol 11:1217–1222

    Article  CAS  PubMed  Google Scholar 

  10. Turteltaub KW, Mani C (2003) Benzene metabolism in rodents at doses relevant to human exposure from urban air. Res Rep Health Eff Inst (113): 1–26; discussion 27–35

    Google Scholar 

  11. Kim SH, Kelly PB, Clifford AJ (2010) Calculating radiation exposures during use of 14C-labeled nutrients, food components, and biopharmaceuticals to quantify metabolic behavior in humans. J Agric Food Chem 58: 4632–4637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Dingley KH, Curtis KD, Nowell S, Felton JS, Lang NP, Turteltaub KW (1999) DNA and protein adduct formation in the colon and blood of humans after exposure to a dietary-relevant dose of 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine. Cancer Epidemiol Biomarkers Prev 8:507–512

    CAS  PubMed  Google Scholar 

  13. Malfatti MA, Dingley KH, Nowell-Kadlubar S et al (2006) The urinary metabolite profile of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine is predictive of colon DNA adducts after a low-dose exposure in humans. Cancer Res 66:10541–10547

    Article  CAS  PubMed  Google Scholar 

  14. Jubert C, Mata J, Bench G et al (2009) Effects of chlorophyll and chlorophyllin on low-dose aflatoxin B1 pharmacokinetics in human volunteers. Cancer Prev Res 2:1015–1022

    Article  CAS  Google Scholar 

  15. Brown K, Tompkins EM, Boocock DJ et al (2007) Tamoxifen forms DNA adducts in human colon after administration of a single [14C]-labeled therapeutic dose. Cancer Res 67: 6995–7002

    Article  CAS  PubMed  Google Scholar 

  16. Vogel JS, Love AH (2005) Quantitating isotopic molecular labels with accelerator mass spectrometry. Methods Enzymol 402:402–422

    Article  CAS  PubMed  Google Scholar 

  17. Vogel JS, Turteltaub KW (1998) Accelerator mass spectrometry as a bioanalytical tool for nutritional research. Adv Exp Med Biol 445: 397–410

    Article  CAS  PubMed  Google Scholar 

  18. Coldwell KE, Cutts SM, Ognibene TJ, Henderson PT, Phillips DR (2008) Detection of adriamycin-DNA adducts by accelerator mass spectrometry at clinically relevant adriamycin concentrations. Nucleic Acids Res 36:e100

    Article  PubMed Central  PubMed  Google Scholar 

  19. Coldwell KE, Cutts SM, Ognibene T, Henderson PT, Phillips DR (2010) Detection of adriamycin-DNA adducts by accelerator mass spectrometry. Methods Mol Biol 613: 103–118

    Article  CAS  PubMed  Google Scholar 

  20. Hah SS, Henderson PT, Turteltaub KW (2010) Towards biomarker-dependent individualized chemotherapy: exploring cell-specific differences in oxaliplatin–DNA adduct distribution using accelerator mass spectrometry. Bioorg Med Chem Lett 20:2448–2451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Marsden DA, Jones DJ, Britton RG et al (2009) Dose-response relationships for N7-(2-hydroxyethyl)guanine induced by low-dose [14C]ethylene oxide: evidence for a novel mechanism of endogenous adduct formation. Cancer Res 69:3052–3059

    Article  CAS  PubMed  Google Scholar 

  22. Vogel JS, Palmblad M, Ognibene T, Kabir MM, Buchholz BA, Bench G (2007) Biochemical paths in humans and cells: frontiers of AMS bioanalysis. Nucleic Instrum Meth Phys Res 259:745–751

    Article  CAS  Google Scholar 

  23. Hah SS, Sumbad RA, de Vere White RW, Turteltaub KW, Henderson PT (2007) Characterization of oxaliplatin-DNA adduct formation in DNA and differentiation of cancer cell drug sensitivity at microdose concentrations. Chem Res Toxicol 20:1745–1751

    Article  CAS  PubMed  Google Scholar 

  24. Hah SS, Stivers KM, de Vere White RW, Henderson PT (2006) Kinetics of carboplatin-DNA binding in genomic DNA and bladder cancer cells as determined by accelerator mass spectrometry. Chem Res Toxicol 19: 622–626

    Article  CAS  PubMed  Google Scholar 

  25. Rickert DE, Dingley K, Ubick E, Dix KJ, Molina L (2005) Determination of the tissue distribution and excretion by accelerator mass spectrometry of the nonadecapeptide 14C-Moli1901 in beagle dogs after intratracheal instillation. Chem Biol Interact 155: 55–61

    Article  CAS  PubMed  Google Scholar 

  26. Brown K, Dingley KH, Turteltaub KW (2005) Accelerator mass spectrometry for biomedical research. Methods Enzymol 402:423–443

    Article  CAS  PubMed  Google Scholar 

  27. Buchholz BA, Freeman SP, Haack KS, Vogel JS (2000) Tips and traps in the C-14 bio-AMS preparation laboratory. Nucleic Instrum Meth Phys Res 172:404–408

    Article  CAS  Google Scholar 

  28. Ognibene TJ, Bench G, Vogel JS, Peaslee GF, Murov S (2003) A high-throughput method for the conversion of CO2 obtained from biochemical samples to graphite in septa-sealed vials for quantification of 14C via accelerator mass spectrometry. Anal Chem 75: 2192–2196

    Article  CAS  PubMed  Google Scholar 

  29. Chiarappa-Zucca ML, Dingley KH, Roberts ML, Velsko CA, Love AH (2002) Sample preparation for quantitation of tritium by accelerator mass spectrometry. Anal Chem 74: 6285–6290

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Kristin Stoker for help with preparation of the manuscript. This work performed under the auspices of the US DOE (DE-AC52-07NA27344) with support from the NIH/National Center for Research Resources (RR13461).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Humana Press

About this protocol

Cite this protocol

Dingley, K.H. et al. (2014). DNA Isolation and Sample Preparation for Quantification of Adduct Levels by Accelerator Mass Spectrometry. In: Keohavong, P., Grant, S. (eds) Molecular Toxicology Protocols. Methods in Molecular Biology, vol 1105. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-739-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-739-6_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-738-9

  • Online ISBN: 978-1-62703-739-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics