Skip to main content

Carbon-Fiber Amperometry in the Study of Exocytosis

  • Protocol
  • First Online:
Exocytosis Methods

Part of the book series: Neuromethods ((NM,volume 83))

  • 738 Accesses

Abstract

Understanding how signaling molecules are released from cells is essential for furthering our knowledge of the basic biological mechanisms controlling many significant biological pathways. These molecules, including neurotransmitters, hormones, growth factors, and peptides, are released from cells via a process called exocytosis. Our laboratory has utilized a noninvasive method of measuring the release of oxidizable molecules from cells, known as carbon-fiber amperometry. In this chapter we will describe how we undertake such measurements, how the resulting data is analyzed, and what the outcomes mean in terms of physiology. We provide examples of our work measuring catecholamine release in single chromaffin cells as well as serotonin release from intact sections of colon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burgoyne RD, Morgan A (2003) Secretory granule exocytosis. Physiol Rev 83:581–632

    PubMed  CAS  Google Scholar 

  2. Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  PubMed  Google Scholar 

  3. Kissinger PT, Hart JB, Adams RN (1973) Voltammetry in brain tissue—a new neurophysiological measurement. Brain Res 55:209–213

    Article  PubMed  CAS  Google Scholar 

  4. Chow R, Rüden L (2009) Electrochemical detection of secretion from single cells. In: Sakmann B, Neher E (eds) Single-channel recording. Springer, New York, pp 245–275

    Google Scholar 

  5. Wightman RM, Jankowski JA, Kennedy RT et al (1991) Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci U S A 88:10754–10758

    Article  PubMed  CAS  Google Scholar 

  6. Stamford JA (1986) In vivo voltammetry: some methodological considerations. J Neuro-sci Methods 17:1–29

    Google Scholar 

  7. Leszczyszyn DJ, Jankowski JA, Viveros OH, Diliberto EJ, Near JA, Wightman RM (1990) Nicotinic receptor-mediated catecholamine secretion from individual chromaffin cells. Chemical evidence for exocytosis. J Biol Chem 265:14736–14737

    PubMed  CAS  Google Scholar 

  8. Keating DJ, Dubach D, Zanin MP et al (2008) Dscr1/rcan1 regulates vesicle exocytosis and fusion pore kinetics: implications for Down syndrome and Alzheimer’s disease. Hum Mol Genet 17:1020–1030

    Article  PubMed  CAS  Google Scholar 

  9. Zanin MP, Phillips L, Mackenzie KD, Keating DJ (2011) Aging differentially affects multiple aspects of vesicle fusion kinetics. PLoS One 6:e27820

    Article  PubMed  CAS  Google Scholar 

  10. Spencer NJ, Nicholas SJ, Robinson L et al (2011) Mechanisms underlying distension-evoked peristalsis in guinea pig distal colon: is there a role for enterochromaffin cells? Am J Physiol 301:G519–G527

    CAS  Google Scholar 

  11. Keating DJ, Spencer NJ (2010) Release of 5-hydroxytryptamine from the mucosa is not required for the generation or propagation of colonic migrating motor complexes. Gastroenterology 138:659–670, e652

    Article  PubMed  CAS  Google Scholar 

  12. Chow RH, von Ruden L, Neher E (1992) Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356:60–63

    Article  PubMed  CAS  Google Scholar 

  13. Zhou Z, Misler S, Chow RH (1996) Rapid fluctuations in transmitter release from single vesicles in bovine adrenal chromaffin cells. Biophys J 70:1543–1552

    Article  PubMed  CAS  Google Scholar 

  14. Douglas WW (1968) Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol 34:451–474

    Article  PubMed  CAS  Google Scholar 

  15. Burgoyne RD (1991) Control of exocytosis in adrenal chromaffin cells. Biochim Biophys Acta 1071:174–202

    Article  PubMed  CAS  Google Scholar 

  16. Domínguez N, Rodríguez M, Machado JD, Borges R (2012) Preparation and culture of adrenal chromaffin cells # T neurotrophic factors. Methods Mol Biol 846:223–234

    Article  PubMed  Google Scholar 

  17. Moser T, Neher E (1997) Rapid exocytosis in single chromaffin cells recorded from mouse adrenal slices. J Neurosci 17:2314–2323

    PubMed  CAS  Google Scholar 

  18. Colliver TL, Hess EJ, Ewing AG (2001) Amperometric analysis of exocytosis at chromaffin cells from genetically distinct mice. Neurosci Methods 105:95–103

    Google Scholar 

  19. Erspamer V (1954) Pharmacology of indole-alkylamines. Pharmacol Rev 6:425–487

    PubMed  CAS  Google Scholar 

  20. Thompson M, Fleming KA, Evans DJ, Fundele R, Surani MA, Wright NA (1990) Gastric endocrine cells share a clonal origin with other gut cell lineages. Development 110:477–481

    PubMed  CAS  Google Scholar 

  21. Racke K, Schworer H (1991) Regulation of serotonin release from the intestinal mucosa. Pharmacol Res 23:13–25

    Article  PubMed  CAS  Google Scholar 

  22. Racke K, Reimann A, Schworer H, Kilbinger H (1996) Regulation of 5-ht release from enterochromaffin cells. Behav Brain Res 73:83–87

    Article  PubMed  CAS  Google Scholar 

  23. Minami M, Tamakai H, Ogawa T et al (1995) Chemical modulation of 5-ht3 and 5-ht4 receptors affects the release of 5-hydroxytryptamine from the ferret and rat intestine. Res Commun Mol Pathol Pharmacol 89:131–142

    PubMed  CAS  Google Scholar 

  24. Hirafuji M, Ogawa T, Kato K et al (2001) Noradrenaline stimulates 5-hydroxytryptamine release from mouse ileal tissues via alpha(2)-adrenoceptors. Eur J Pharmacol 432:149–152

    Article  PubMed  CAS  Google Scholar 

  25. Bertrand PP (2006) Real-time measurement of serotonin release and motility in guinea pig ileum. J Physiol 577:689–704

    Article  PubMed  CAS  Google Scholar 

  26. Tanaka T, Mizumoto A, Mochiki E, Haga N, Suzuki H, Itoh Z (2004) Relationship between intraduodenal 5-hydroxytryptamine release and interdigestive contractions in dogs. J Smooth Muscle Res 40:75–84

    Article  PubMed  Google Scholar 

  27. Bertrand PP, Bertrand RL (2010) Serotonin release and uptake in the gastrointestinal tract. Auton Neurosci 153:47–57

    Article  PubMed  CAS  Google Scholar 

  28. Bertrand PP (2004) Real-time detection of serotonin release from enterochromaffin cells of the guinea-pig ileum. Neurogastroenterol Motil 16:511–514

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Duffield, M.D., Raghupathi, R., Keating, D.J. (2014). Carbon-Fiber Amperometry in the Study of Exocytosis. In: Thorn, P. (eds) Exocytosis Methods. Neuromethods, vol 83. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-676-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-676-4_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-675-7

  • Online ISBN: 978-1-62703-676-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics