Skip to main content

The Maillard Reaction Induced Modifications of Endogenous Opioid Peptide Enkephalin

  • Protocol
  • First Online:
Peptide Modifications to Increase Metabolic Stability and Activity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1081))

Abstract

Nonenzymatic glycation (Maillard reaction) is a posttranslational modification of peptides and proteins by sugars, which, after a cascade of reactions, leads to the formation of a complex family of irreversibly changed advanced glycation end products (AGE) implicated in the pathogenesis of human diseases. Last reversible intermediates of this reaction are Amadori/Heyns compounds formed in glucose/fructose induced modification of peptides. The stability of these compounds determines the further course of the reaction.

To provide information concerning the preparation of model systems as well as the fate of glycated opioid peptides introduced in the human circulation, the enzymatic (80 % human serum) and chemical (PBS) stability of Amadori and Heyns compounds related to the endogenous opioid pentapeptides leucine- and methionine-enkephalin (Tyr-Gly-Gly-Phe-Leu/Met) were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pert CB, Snyder SH (1973) Opiate receptor: demonstration in nervous tissue. Science 179:1011–1014

    Article  PubMed  CAS  Google Scholar 

  2. Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–579

    Article  PubMed  CAS  Google Scholar 

  3. Horvat Š (2001) Opioid peptides and their glycoconjugates: structure–activity relationship. Curr Med Chem CNS Agent 1:133–154

    CAS  Google Scholar 

  4. Janecka A, Perlikowska R, Gach K, Wyrębska A, Fichna J (2010) Development of opioid peptide analogs for pain relief. Curr Pharmac Des 16:1126–1135

    Article  CAS  Google Scholar 

  5. Narita M, Tseng LF (1998) Evidence for the existence of the β-endorphin-sensitive “ε-opioid receptor” in the brain: the mechanisms of ε-mediated antinociception. Jpn J Pharmacol 76:233–253

    Article  PubMed  CAS  Google Scholar 

  6. Grevel J, Yu V, Sadee W (1985) Characterization of a labile naloxone binding site (λ site) in rat brain. J Neurochem 44:1647–1656

    Article  PubMed  CAS  Google Scholar 

  7. Oka T (1980) Enkephalin receptor in the rabbit ileum. Br J Pharmacol 68:193–195

    Article  PubMed  CAS  Google Scholar 

  8. Zagon IS, Gibo DM, McLaughlin PJ (1991) Zeta (ξ), a growth-related opioid receptor in developing rat cerebellum: identification and characterization. Brain Res 551:28–35

    Article  PubMed  CAS  Google Scholar 

  9. Teschemacher H (1993) Opioids I. In: Hertz A (ed) Handbook of experimental pharmacology 104/I. Springer, Berlin, pp 499–528

    Google Scholar 

  10. Zadina JE, Hackler L, Ge LJ, Kastin AJ (1997) A potent and selective endogenous agonist for the μ-opiate receptor. Nature 386:499–502

    Article  PubMed  CAS  Google Scholar 

  11. Yamazaki T, Ro S, Goodman M, Chung NN, Schiller PW (1993) A topochemical approach to explain morphiceptin bioactivity. J Med Chem 36:708–719

    Article  PubMed  CAS  Google Scholar 

  12. Witt KA, Gillespie TJ, Huber JD, Egleton RD, Davis TP (2001) Peptide drug modifications to enhance bioavailability and blood–brain barrier permeability. Peptides 22:2329–2343

    Article  PubMed  CAS  Google Scholar 

  13. Gaby AR (2005) Adverse effects of dietary fructose. Altern Med Rev 10:294–306

    PubMed  Google Scholar 

  14. Schalkwijk CG, Stehouwer CDA, van Hinsbergh VWM (2004) Fructose-mediated non-enzymatic glycation: sweet coupling or bad modification. Diabet Metab Res Rev 20:369–382

    Article  CAS  Google Scholar 

  15. Hinton DJS, Ames JM (2006) Site specificity of glycation and carboxymethylation of bovine serum albumin by fructose. Amino Acids 30:425–433

    Article  PubMed  CAS  Google Scholar 

  16. Shipar MAH (2006) Formation of the Heyns rearrangement products in dihydoxyacetone and glycine Maillard reaction: a computational study. Food Chem 97:231–243

    Article  CAS  Google Scholar 

  17. Suarez G, Rajaram R, Oronsky AL, Gawinowicz MA (1989) Nonenzymatic glycation of bovine serum albumin by fructose (fructation). Comparison with the Maillard reaction initiated by glucose. J Biol Chem 264:3674–3679

    PubMed  CAS  Google Scholar 

  18. Ahmad N, Furth AJ (1992) Failure of common glycation assays to detect glycation by fructose. Clin Chem 38:1301–1303

    Google Scholar 

  19. Roščić M, Horvat Š (2006) Transformations of bioactive peptides in the presence of sugar-characterization and stability studies of the adducts generated via the Maillard reaction. Bioorg Med Chem 14:4933–4943

    Article  PubMed  Google Scholar 

  20. Jakas A, Vinković M, Smrečki V, Šporec M, Horvat Š (2008) Fructose-induced N-terminal glycation of enkephalin and related peptides. J Pept Sci 14:936–945

    Article  PubMed  CAS  Google Scholar 

  21. Marini M, Roscetti G, Bongiorno L, Urbani A, Roda LG (1990) Hydrolysis and protection from hydrolysis of enkephalins in human plasma. Neurochem Res 15:61–67

    Article  PubMed  CAS  Google Scholar 

  22. Bolacchi F, Marini M, Urbani A, Roda LG (1995) Enzymes and inhibitors in Leu-enkephalin in metabolism in human plasma. Neurochem Res 20:991–999

    Article  PubMed  CAS  Google Scholar 

  23. Ostreowska H (1997) Cathepsin A—like activity in thrombin—activated human platelets substrate specificity, pH dependence, and inhibitory profile. Thromb Res 86:393–404

    Article  Google Scholar 

  24. Jakas A, Horvat Š (2004) The effect of glycation on the chemical and enzymatic stability of the endogenous opioid peptide, leucine-enkephalin, and related fragments. Bioorg Chem 32:516–526

    Article  PubMed  CAS  Google Scholar 

  25. Jakas A, Horvat Š (2003) The effect of glycation on the chemical and enzymatic stability of the endogenous opioid peptide, leucine-enkephalin, and related smaller fragents: stability, reactions, and spectroscopic peptides. Biopolymers 69:421–431

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jakas, A. (2013). The Maillard Reaction Induced Modifications of Endogenous Opioid Peptide Enkephalin. In: Cudic, P. (eds) Peptide Modifications to Increase Metabolic Stability and Activity. Methods in Molecular Biology, vol 1081. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-652-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-652-8_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-651-1

  • Online ISBN: 978-1-62703-652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics