Skip to main content

The Chemical Synthesis of α-Conotoxins and Structurally Modified Analogs with Enhanced Biological Stability

  • Protocol
  • First Online:
Peptide Modifications to Increase Metabolic Stability and Activity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1081))

Abstract

α-Conotoxins are peptide neurotoxins isolated from the venom ducts of carnivorous marine cone snails that exhibit exquisite pharmacological potency and selectivity for various nicotinic acetylcholine receptor subtypes. As such, they are important research tools and drug leads for treating various diseases of the central nervous system, including pain and tobacco addiction. Despite their therapeutic potential, the chemical synthesis of α-conotoxins for use in structure–activity relationship studies is complicated by the possibility of three disulfide bond isomers, where inefficient folding methods can lead to a poor recovery of the pharmacologically active isomer. In order to achieve higher yields of the native isomer, especially in high-throughput syntheses it is necessary to select appropriate oxidative folding conditions. Moreover, the poor biochemical stability exhibited by α-conotoxins limits their general therapeutic applicability in vivo. Numerous strategies to enhance their stability including the substitution of disulfide bond with diselenide bond and N-to-C cyclization via an oligopeptide spacer have successfully overcome these limitations. This chapter describes methods for performing both selective and nonselective disulfide bond oxidation strategies for controlling the yields and formation of α-conotoxin disulfide bond isomers, as well as methods for the production of highly stable diselenide-containing and N-to-C cyclized conotoxin analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis RJ, Garcia ML (2003) Therapeutic potential of venom peptides. Nat Rev Drug Discov 2:790–802

    Article  PubMed  CAS  Google Scholar 

  2. Han TS, Teichert RW, Olivera BM, Bulaj G (2008) Conus venoms—a rich source of peptide-based therapeutics. Curr Pharm Des 14:2462–2479

    Article  PubMed  CAS  Google Scholar 

  3. Woodward SR, Cruz LJ, Olivera BM, Hillyard DR (1990) Constant and hypervariable regions in conotoxin peptides. EMBO J 9:1015–1020

    PubMed  CAS  Google Scholar 

  4. Armishaw CJ (2010) Synthetic α-conotoxin mutants as probes for studying nicotinic acetylcholine receptors and in the development of novel drug leads. Toxins (Basel) 2: 1470–1498

    Article  Google Scholar 

  5. Sharpe IA, Gehrmann J, Loughnan ML, Thomas L, Adams DA, Atkins A, Palant E, Craik DJ, Alewood PF, Lewis RJ (2001) Two new classes of conopeptides inhibit the α1-adrenoreceptor and noradrenaline transporter. Nat Neurosci 4:902–907

    Article  PubMed  CAS  Google Scholar 

  6. Brust A, Palant E, Croker DE, Colless B, Drinkwater R, Patterson B, Schroeder C, Wilson D, Nielsen CK, Smith MT, Alewood D, Alewood PF, Lewis RJ (2009) χ-Conopeptide pharmacophore development: Toward a novel class of norepinephrine transporter inhibitor (Xen2174) for pain. J Med Chem 52: 6991–7002

    Article  PubMed  CAS  Google Scholar 

  7. Dutton JL, Bansal PS, Hogg RC, Adams DJ, Alewood PF, Craik DJ (2002) A new level of conotoxin diversity, a non-native disulfide bond connectivity in α-conotoxin AuIB reduces structural definition but increases biological activity. J Biol Chem 277: 48849–48857

    Article  PubMed  CAS  Google Scholar 

  8. Armishaw CJ, Singh N, Medina-Franco J, Clark RJ, Scott KCM, Houghten RA, Jensen AA (2010) A synthetic combinatorial strategy for developing α-conotoxin analogs as potent α7 nicotinic acetylcholine receptor antagonists. J Biol Chem 285:1809–1821

    Article  PubMed  CAS  Google Scholar 

  9. Armishaw CJ, Daly NL, Nevin ST, Adams DJ, Craik DJ, Alewood PF (2006) α-Selenoconotoxins: a new class of potent α7 neuronal nicotinic receptor antagonists. J Biol Chem 281:14136–14143

    Article  PubMed  CAS  Google Scholar 

  10. Schnölzer M, Alewood P, Jones A, Alewood D, Kent SBH (1992) In situ neutralization in Boc-chemistry solid phase peptide synthesis. Int J Protein Pept Res 40:180–193

    Article  Google Scholar 

  11. Houghten RA (1985) General-method for the rapid solid-phase synthesis of large numbers of peptides—specificity of antigen-antibody interaction at the level of individual amino-acids. Proc Natl Acad Sci USA 82:5131–5135

    Article  PubMed  CAS  Google Scholar 

  12. Houghten RA, Bray MK, Degraw ST, Kirby CJ (1986) Simplified procedure for carrying out simultaneous multiple hydrogen fluoride cleavages of protected peptide resins. Int J Pept Protein Res 27:673–678

    Article  PubMed  CAS  Google Scholar 

  13. Stewart JM (1997) Cleavage methods following boc-based solid phase peptide synthesis. In: Fields GB (ed) Methods in enzymology. Academic, New York, pp 29–44

    Google Scholar 

  14. Pennington MW, Dunn BM (eds) (1994) Peptide synthesis protocols. Methods in molecular biology. Humana, Totowa, NJ

    Google Scholar 

  15. Fields GB (ed) (1997) Solid-phase peptide synthesis. Methods in enzymology, vol 289. Academic, New York, NY

    Google Scholar 

  16. Schnölzer M, Alewood P, Jones A, Alewood D, Kent SBH (2007) In situ neutralization in Boc-chemistry solid phase peptide synthesis. Int J Pept Res Ther 13:31–44

    Article  Google Scholar 

  17. Sarin VK, Kent SBH, Tam JP, Merrifield RB (1981) Quantitative monitoring of solid phase peptide synthesis by the ninhydrin reaction. Anal Biochem 117:147–157

    Article  PubMed  CAS  Google Scholar 

  18. Kamber B, Hartmann A, Eisler K, Riniker B, Rink H, Sieber P, Rittel W (1980) The synthesis of cystine peptides by iodine oxidation of S-trityl-cysteine and S-acetamidomethyl-cysteine peptides. Helv Chim Acta 63:899–915

    Article  CAS  Google Scholar 

  19. Ponsati B, Giralt E, Andreu D (1990) Solid-phase approaches to regiospecific double disulfide bond formation. Application to a fragment of bovine pituitary peptide. Tetrahedron 46:8255–8266

    Article  CAS  Google Scholar 

  20. Sieber P, Kamber B, Riniker B, Rittel W (1980) Iodine oxidation of S-trityl- and S-acetomidomethyl-cysteine-peptides containing tryptophan: conditions leading to the formation of tryptophan-2-thioethers. Helv Chim Acta 63:2358–2362

    Article  CAS  Google Scholar 

  21. Armishaw CJ, Dutton JL, Craik DJ, Alewood PF (2010) Establishing regiocontrol of disulfide bond isomers of α-conotoxin ImI via the synthesis of N-to-C cyclic analogs. Biopolymers 94:307–313

    Article  PubMed  CAS  Google Scholar 

  22. Bulaj G (2005) Formation of disulfide bonds in proteins and peptides. Biotechnol Adv 23:87–92

    Article  PubMed  CAS  Google Scholar 

  23. Neilsen JS, Buczek P, Bulaj G (2004) Cosolvent-assisted oxidative folding of a bicyclic α-conotoxin ImI. J Pept Sci 10:249–256

    Article  Google Scholar 

  24. Hargittai B, Solé NA, Groebe DR, Abramson SN, Barany G (2000) Chemical synthesis and biological activities of lactam analogues of α-conotoxin SI. J Med Chem 43:4787–4792

    Article  PubMed  CAS  Google Scholar 

  25. Dekan Z, Vetter I, Daly NL, Craik DJ, Lewis RJ, Alewood PF (2011) α-Conotoxin ImI incorporating stable cystathione bridges maintains full potency and identical three-dimensional structure. J Am Chem Soc 133: 15866–15869

    Article  PubMed  CAS  Google Scholar 

  26. MacRaild CA, Illesinghe J, van Lierop BJ, Townsend AL, Chebib M, Livett BG, Robinson AJ, Norton RS (2009) Structure and activity of (2,8)-Dicarba-(3,12)-cystino α-ImI, an α-conotoxin containing a nonreducible cystine analogue. J Med Chem 52:755–762

    Article  PubMed  CAS  Google Scholar 

  27. Muttenthaler M, Nevin ST, Grishin AA, Ngo ST, Choy PT, Daly NL, Hu S-H, Armishaw CJ, Wang C-I, Lewis RJ, Martin JL, Noakes PG, Craik DJ, Adams DJ, Alewood PF (2010) Solving the α-conotoxin folding problem: efficient selenium-directed on-resin generation of more potent and stable nicotinic acetylcholine receptor antagonists. J Am Chem Soc 132: 3514–3522

    Article  PubMed  CAS  Google Scholar 

  28. Muttenthaler M, Alewood PF (2008) Selenopeptide chemistry. J Pept Sci 14: 1223–1239

    Article  PubMed  CAS  Google Scholar 

  29. Craik DJ (2006) Seamless proteins tie up their loose ends. Science 311:1563–1564

    Article  PubMed  Google Scholar 

  30. Luckett S, Santiago-Garcia R, Barker JJ, Konarev AV, Shewry PR, Clarke AR, Brady RL (1999) High-resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds. J Mol Biol 290:525–533

    Article  PubMed  CAS  Google Scholar 

  31. Tang Y-Q, Yuan J, Ösapay G, Ösapay K, Tran D, Miller CJ, Ouellette AJ, Selsted ME (1999) A cyclic antimicrobial peptide produced in primary leukocytes by the ligation of two truncated α-defensins. Science 286:498–502

    Article  PubMed  CAS  Google Scholar 

  32. Clark RJ, Fischer H, Dempster L, Daly NL, Rosengren KJ, Nevin ST, Meunier FA, Adams DJ, Craik DJ (2005) Engineering stable peptide toxins by means of backbone cyclization: stabilization of the α-conotoxin MII. Proc Natl Acad Sci USA 102:13767–13772

    Article  PubMed  CAS  Google Scholar 

  33. Clark RJ, Jensen J, Nevin ST, Callaghan BP, Adams DJ, Craik DJ (2010) The engineering of an orally active conotoxin for the treatment of neuropathic pain. Angew Chem Int Ed 49:6545–6548

    Article  CAS  Google Scholar 

  34. Camarero JA, Muir TW (1997) Chemoselective backbone cyclisation of unprotected peptides. Chem Commun 1997:1369–1370

    Article  Google Scholar 

  35. Tam JP, Lu Y, Yu Q (1999) Thia zip reaction for synthesis of large cyclic peptides: mechanisms and applications. J Am Chem Soc 121: 4316–4324

    Article  CAS  Google Scholar 

  36. Clippingdale AB, Barrow CJ, Wade JD (2000) Peptide thioester preparation by Fmoc solid phase peptide synthesis for use in native chemical ligation. J Pept Sci 6:225–234

    Article  PubMed  CAS  Google Scholar 

  37. Brask J, Albericio F, Jensen KJ (2003) Fmoc solid-phase synthesis of peptide thioesters by masking as trithioortho esters. Org Lett 5: 2951–2953

    Article  PubMed  CAS  Google Scholar 

  38. Tofteng AP, Jensen KJ, Hoeg-Jensen T (2007) Peptide dithioethanol esters for in situ generation of thioesters for use in native chemical ligation. Tetrahedron Lett 48:2105–2107

    Article  CAS  Google Scholar 

  39. Dekan Z, Paczkowski FA, Lewis RJ, Alewood PF (2007) Synthesis and in vitro biological activity of cyclic lipophilic χ-conotoxin MrIA analogues. Int J Pept Res Ther 13: 307–312

    Article  CAS  Google Scholar 

  40. Armishaw CJ, Jensen AA, Balle LD, Scott KCM, Sørensen L, Strømgaard K (2011) Improving the stability of α-conotoxin AuIB through N-to-C cyclization: the effect of spacer length on stability and activity at nicotinic acetylcholine receptors. Antioxid Redox Signal 14:65–76

    Article  PubMed  CAS  Google Scholar 

  41. Cabilly S (ed) (1998) Combinatorial peptide library protocols. Methods in molecular biology, vol 87. Humana, Totowa, NJ

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge financial support by the James and Esther King Biomedical Research Program (New Investigator Grant, 1KN02-33990), the Arthritis and Chronic Pain Research Institute, and the State of Florida.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Banerjee, J., Gyanda, R., Chang, YP., Armishaw, C.J. (2013). The Chemical Synthesis of α-Conotoxins and Structurally Modified Analogs with Enhanced Biological Stability. In: Cudic, P. (eds) Peptide Modifications to Increase Metabolic Stability and Activity. Methods in Molecular Biology, vol 1081. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-652-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-652-8_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-651-1

  • Online ISBN: 978-1-62703-652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics