Skip to main content

Solid-Phase Guanidinylation of Peptidyl Amines Compatible with Standard Fmoc-Chemistry: Formation of Monosubstituted Guanidines

  • Protocol
  • First Online:
Peptide Modifications to Increase Metabolic Stability and Activity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1081))

Abstract

With the growing importance of peptides and peptidomimetics as potential therapeutic agents, a continuous synthetic interest has been shown for their modification to provide more stable and bioactive analogs. Among many approaches, peptide/peptidomimetic guanidinylation offers access to analogs possessing functionality with strong basic properties, capable of forming stable intermolecular H-bonds, charge pairing, and cation-π interactions. Therefore, guanidinium functional group is considered as an important pharmacophoric element. Although a number of methods for solid-phase guanidinylation reactions exist, only a few are fully compatible with standard Fmoc solid-phase peptide chemistry.

In this chapter we summarize the solid-phase guanidinylation methods fully compatible with standard Fmoc-synthetic methodology. This includes use of direct guanidinylating reagents such as 1-H-pyrazole-1-carboxamidine and triflylguanidine, and guanidinylation with di-protected thiourea derivatives in combination with promoters such as Mukaiyama’s reagent, N-iodosuccinimide, and N,N′-diisopropylcarbodiimide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katritzky AR, Rogovoy BV (2005) Recent developments in guanidinylating agents. Arkivoc 4:49–87

    Google Scholar 

  2. Manimala JC, Eric V, Anslyn EV (2002) Solid-phase synthesis of guanidinium derivatives from thiourea and isothiourea functionalities. Eur J Org Chem 2002:3909–3922

    Google Scholar 

  3. Heys L, Moore CG, Murphy PJ (2000) The guanidine metabolites of and related compounds; Isolation and synthesis. Chem Soc Rev 29:57–67

    Google Scholar 

  4. Kajimura Y, Kaneda M (1996) Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot 49:129–135

    Google Scholar 

  5. Kajimura Y, Kaneda M (1997) Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: Isolation, structure elucidation and biological activity. J Antibiot 50:220–228

    Google Scholar 

  6. Kurusu K, Ohba K (1987) New peptide antibiotics LI-F03, F04, F05, F07, and F08, produced by Bacillus polymyxa. I. Isolation and characterization. J Antibiot 40:1506–1514

    Google Scholar 

  7. Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Google Scholar 

  8. Yamamoto T, Hori M, Watanabe I, Tsutsi H, Harada K, Ikeda S, Ohtaka H (1997) Structural requirements for potential Na/H exchange inhibitors obtained from quantitative structure-activity relationships of monocyclic and bicyclic aroylguanidines. Chem Pharm Bull 45:1282–1286

    Google Scholar 

  9. Yamamoto T, Hori M, Watanabe I, Tsutsi H, Harada K, Ikeda S, Maruo T, Ohtaka H (1998) Synthesis and quantitative structure-activity relationships of N-(3-oxo-3,4-dihydro-2H-benzo[1,4]oxazine-6-carbonyl)guanidines as Na/H exchange inhibitors. Chem Pharm Bull 46:1716–1723

    Google Scholar 

  10. Adang AE, Lucas H, de Man AP, Engh RA, Grootenhuis PD (1998) Novel acylguanidine containing thrombin inhibitors with reduced basicity at the P1 moiety. Bioorg Med Chem Lett 8:3603–3608

    Google Scholar 

  11. Sainlos M, Belmont P, Vigneron JP, Lehn P, Lehn JM (2003) Aminoglycoside-derived cationic lipids for gene transfection: synthesis of Kanamycin A derivatives. Eur J Org Chem 2003:2764–2774

    Google Scholar 

  12. Sainlos M, Hauchecorne M, Oudrhir IN, Zertal-Zidani S, Aissaoui A, Vigneron JP, Lehn JM, Lehn P (2005) Kanamycin A-derived cationic lipids as vectors for gene transfection. Chembiochem 6:1023–1033

    Google Scholar 

  13. Schmidt N, Mishra A, Lai GH, Wong GC (2010) Arginine-rich cell-penetrating peptides. FEBS Lett 584:1806–1813

    Google Scholar 

  14. Milletti F (2012) Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today 17(15–16):850–860

    Google Scholar 

  15. El-Sayed A, Futaki S, Harashima H (2009) Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J 11:13–22

    Google Scholar 

  16. Wender PA, Galliher WC, Goun EA, Jones LR, Pillow TH (2008) The design of guanidinium-rich transporters and their internalization mechanisms. Adv Drug Deliv Rev 60:452–472

    Google Scholar 

  17. Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56:318–325

    Google Scholar 

  18. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840

    Google Scholar 

  19. Wu Z, de Leeuw E, Ericksen B, Lu W (2005) Why is the Arg5-Glu13 salt bridge conserved in mammalian alpha-defensins? J Biol Chem 280:43039–43047

    Google Scholar 

  20. Hancock REW, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16:82–88

    Google Scholar 

  21. Peschel A, Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529–536

    Google Scholar 

  22. Stawikowski M, Cudic P (2006) A novel strategy for the solid-phase synthesis of cyclic lipodepsipeptides. Tetrahedron Lett 47:8587–8590

    Google Scholar 

  23. Bionda N, Stawikowski M, Stawikowska R, Cudic M, López-Vallejo F, Treitl D, Medina-Franco J, Cudic P (2012) Effects of cyclic lipodepsipeptide structural modulation on stability, antibacterial activity, and human cell toxicity. ChemMedChem 7:871–882

    Google Scholar 

  24. Robinson S, Roskamp EJ (1997) Solid phase synthesis of guanidines. Tetrahedron 53:6697–6705

    Google Scholar 

  25. Kowalski J, Lipton MA (1996) Solid phase synthesis of a diketopiperazine catalyst containing the unnatural amino acid (S)-norarginine. Tetrahedron Lett 37:5839–5840

    Google Scholar 

  26. Yong YF, Kowalski JA, Lipton MA (1997) Facile and efficient guanidinylation of amines using thioureas and mukaiyama’s reagent. J Org Chem 62:1540–1542

    Google Scholar 

  27. Yong YF, Kowalski JA, Thoen JC, Lipton MA (1999) A new reagent for solid and solution phase synthesis of protected guanidines from amines. Tetrahedron Lett 40:53–56

    Google Scholar 

  28. Bernatowicz MS, Wu Y, Matsueda GR (1992) 1H-Pyrazole-1-carboxamidine hydrochloride an attractive reagent for guanidinylation of amines and its application to peptide synthesis. J Org Chem 57:2497–2502

    Google Scholar 

  29. Zakhariev S, Szekely Z, Guarnaccia C, Antcheva N, Pongor S (2000) A highly effective method for synthesis of N ω − substituted arginines. Peptides for new millenium. In: Fields GB, Tam JP, Barany G (ed) Proceedings of the 16th American peptide symposium. Kluver Academic, Dordrecht, pp 74–75

    Google Scholar 

  30. Thamm P, Kolobeck W, Musiol HJ, Moroder L (2004) Other side-chain protections, guanidino group. In: Goodman M et al (eds) Houben-Weyl: Synthesis of peptides and peptidomimetics, vol E22a. Georg Thieme Verlag, New york, pp 315–333

    Google Scholar 

  31. Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Peptide Protein Res 35:161–214

    Google Scholar 

  32. Schneider SE, Bishop PA, Salazar MA, Bishop OA, Anslyn EV (1998) Solid phase synthesis of oligomeric guanidiniums. Tetrahedron 54:15063–15086

    Google Scholar 

  33. Drake B, Patek M, Lebl M (1994) A convenient preparation of monosubstituted N,N′-di(Boc)-protected guanidines. Synthesis 6:579–582

    Google Scholar 

  34. Feichtinger K, Zapf C, Sings HL, Goodman M (1998) Diprotected triflylguanidines: a new class of guanidinylation reagents. J Org Chem 63:3804–3805

    Google Scholar 

  35. Feichtinger K, Sings HL, Baker TJ, Matthews K, Goodman M (1998) Triurethane-protected guanidines and triflyldiurethane-protected guanidines: new reagents for guanidinylation reactions. J Org Chem 63:8432–8439

    Google Scholar 

  36. Santana AG, Francisco CG, Suarez E, Gonzalez CC (2010) Synthesis of guanidines from azides: a general and straightforward methodology in carbohydrate chemistry. J Org Chem 75:5371–5374

    Google Scholar 

  37. Poss MA, Iwanowicz E, Reid JA, Lin J, Gu Z (1992) A mild and efficient method for the preparation of guanidines. Tetrahedron Lett 33:5933–5936

    Google Scholar 

  38. Levallet C, Lerpiniere J, Ko SY (1997) The HgCl2-promoted guanidinylation reaction: the scope and limitations. Tetrahedron 53:5291–5304

    Google Scholar 

  39. Ohara K, Vasseur JJ, Smietana M (2009) NIS-promoted guanidinylation of amines. Tetrahedron Lett 50:1463–1465

    Google Scholar 

  40. Kim KS, Qian L (1993) Improved method for the preparation of guanidines. Tetrahedron Lett 34:7677–7680

    Google Scholar 

  41. Shibanuma T, Shiono M, Mukaiyama T (1977) A convenient method for the preparation of carbodiimides using 2-chloropyridinium salt. Chem Lett 5:575–576

    Google Scholar 

  42. Convers E, Tye H, Whittaker M (2004) Preparation and evaluation of a polymer-supported Mukaiyama reagent. Tetrahedron Lett 45:3401–3404

    Google Scholar 

  43. Ley K, Eholzer U (1966) S-amination of thioureas and thiourethanes. Angew Chem Int Ed 5:674–674

    Google Scholar 

  44. Ottmann G, Hooks H (1967) Preparation of S-aminoisothioureas by nucleophilic substitution of S-chloroisothiocarbamoyl chlorides. Angew Chem Int Ed 6:1072–1073

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bionda, N., Cudic, P. (2013). Solid-Phase Guanidinylation of Peptidyl Amines Compatible with Standard Fmoc-Chemistry: Formation of Monosubstituted Guanidines. In: Cudic, P. (eds) Peptide Modifications to Increase Metabolic Stability and Activity. Methods in Molecular Biology, vol 1081. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-652-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-652-8_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-651-1

  • Online ISBN: 978-1-62703-652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics