Skip to main content

Standardization of Data Processing and Statistical Analysis in Comparative Plant Proteomics Experiment

  • Protocol
  • First Online:
Plant Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1072))

Abstract

Two-dimensional gel electrophoresis remains the most widely used technique for protein separation in plant proteomics experiments. Despite the continuous technical advances and improvements in current 2-DE protocols, an adequate and correct experimental design and statistical analysis of the data tend to be ignored or not properly documented in current literature. Both proper experimental design and appropriate statistical analysis are requested in order to confidently discuss our results and to conclude from experimental data.

In this chapter, we describe a model procedure for a correct experimental design and a complete statistical analysis of proteomic dataset. Our model procedure covers all of the steps in data mining and processing, starting with the data preprocessing (transformation, missing value imputation, definition of outliers) and univariate statistics (parametric and nonparametric tests), and finishing with multivariate statistics (clustering, heat-mapping, PCA, ICA, PLS-DA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abril N, Gion J-M, Kerner R (2011) Proteomics research on forest trees, the most recalcitrant and orphan plant species. Phytochemistry 72:1219–1242

    Article  PubMed  CAS  Google Scholar 

  2. Jorrin Novo JV, Maldonado AM, Echevarría-Zomeño S (2009) Second generation proteomic techniques, an appropriate experimental design and data analysis to fulfill MIAPE standards, increase plant proteome coverage and biological knowledge. J Proteomics 72:285–314

    Article  PubMed  CAS  Google Scholar 

  3. Valledor L, Jorrin JV (2011) Back to the basics: maximizing the information obtained by quantitative two dimensional gel electrophoresis analyses by an appropriate experimental design and statistical analyses. J Proteomics 74:1–18

    Article  PubMed  CAS  Google Scholar 

  4. Stessl M, Noe CR, Lachmann B (2009) Influence of image-analysis software on quantitation of two-dimensional gel electrophoresis data. Electrophoresis 30:325–328

    Article  PubMed  CAS  Google Scholar 

  5. Grove H, Jørgensen BM, Jessen F et al (2008) Combination of statistical approaches for analysis of 2-DE data gives complementary results. J Proteome Res 7:5119–5124

    Article  PubMed  CAS  Google Scholar 

  6. Berth M, Moser FM, Kolbe M et al (2007) The state of the art in the analysis of two dimensional gel electrophoresis images. Appl Microbiol Biotechnol 76:1223–1243

    Article  PubMed  CAS  Google Scholar 

  7. Core Team R (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0

    Google Scholar 

  8. Sun X, Weckwerth W (2012) COVAIN: a toolbox for uni- and multivariate statistics, time-series and correlation network analysis and inverse estimation of the differential Jacobian from metabolomics covariance data. Metabolomics 8:S81–S93

    Google Scholar 

  9. Horgan GW (2007) Sample size and replication in 2D gel electrophoresis studies. J Proteome Res 6:2884–2887

    Article  PubMed  CAS  Google Scholar 

  10. Valledor L, Castillejo MA, Lenz C et al (2008) Proteomic analysis of Pinus radiata needles: 2-DE Map and protein identification by LC/MS/MS and substitution-tolerant database searching. J Proteome Res 7:2616–2631

    Article  PubMed  CAS  Google Scholar 

  11. Fay MP, Proschan MA (2009) Wilcoxon–Mann–Whitney or t-test? On assumptions for hypothesis tests and multiple interpretation of decision rules. Stat Surv 4:1–39

    Article  Google Scholar 

  12. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  13. Nedenskov Jensen K, Jessen F, Jørgensen BM (2008) Multivariate data analysis of two-dimensional gel electrophoresis protein patterns from few samples. J Proteome Res 7:1288–1296

    Article  CAS  Google Scholar 

  14. Safavi H, Correa N, Xiong W et al (2008) Independent component analysis of 2-D electrophoresis gels. Electrophoresis 29:4017–4026

    Article  PubMed  CAS  Google Scholar 

  15. Morgenthal K, Wienkoop S, Scholz M et al (2005) Correlative GC–TOF–MS-based metabolite profiling and LC–MS-based protein profiling reveal time-related systemic regulation of metabolite-protein networks and improve pattern recognition for multiple biomarker selection. Metabolomics 1:109–121

    Article  CAS  Google Scholar 

  16. Lê Cao K-A, Boitard S, Besse P (2011) Sparse PLS Discriminant Analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinformatics 22:253

    Article  Google Scholar 

  17. Meunier B, Dumas E, Piec I et al (2007) Assessment of hierarchical clustering methodologies for protemic data mining. J Proteome Res 6:358–366

    Article  PubMed  CAS  Google Scholar 

  18. Zhou J-Y, Schepmoes AA, Zhang X et al (2010) Improved LC-MS/MS spectral counting statistics by recovering low-scoring spectra matched to confidently identified peptide sequences. J Proteome Res 9:5698–5704

    Article  PubMed  CAS  Google Scholar 

  19. Peng J, Elias JE, Thoreen CC et al (2002) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2:43–50

    Article  Google Scholar 

  20. Valledor L, Recuenco L, Egelhofer V et al (2012) The different proteomes of Chlamydomonas reinhardtii. J Proteomics 75:5883–5887

    Article  PubMed  CAS  Google Scholar 

  21. Paoletti AC, Parmely TJ, Tomomori-Sato C et al (2006) Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors. Proc Natl Acad Sci USA 103:18928–18933

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

L.V.’s work was generously supported by a Marie Curie IEF Grant (FP7-PEOPLE-IEF, European Union).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Valledor, L., Romero-Rodríguez, M.C., Jorrin-Novo, J.V. (2014). Standardization of Data Processing and Statistical Analysis in Comparative Plant Proteomics Experiment. In: Jorrin-Novo, J., Komatsu, S., Weckwerth, W., Wienkoop, S. (eds) Plant Proteomics. Methods in Molecular Biology, vol 1072. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-631-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-631-3_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-630-6

  • Online ISBN: 978-1-62703-631-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics