Skip to main content

Creation and Characterization of Component Libraries for Synthetic Biology

  • Protocol
  • First Online:
Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1073))

Abstract

Large numbers of well-described components are essential for advanced synthetic biology and model-guided design of pathways and regulatory networks. Here a method is presented for the creation of libraries of novel control elements. From these libraries, parts with well-defined properties can be selected and used in construction of finely tuned synthetic systems. The example of the PFY1 promoter in S. cerevisiae is used to describe library creation using degenerate synthetic oligos and the circular polymerase extension cloning (CPEC) method. Additionally the workflow of screening the raw library for functional parts is included to provide a full overview of the process of creating and characterizing a component library for synthetic biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cox RS, Surette MG, Elowitz MB (2007) Programming gene expression with combinatorial promoters. Mol Syst Biol 3:145

    Google Scholar 

  2. Gertz J, Siggia ED, Cohen BA (2009) Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature 457:215–218

    Article  CAS  Google Scholar 

  3. Ligr M et al (2006) Gene expression from random libraries of yeast promoters. Genetics 172:2113–2122

    Article  CAS  Google Scholar 

  4. Murphy KF, Balazsi G, Collins JJ (2007) Combinatorial promoter design for engineering noisy gene expression. Proc Natl Acad Sci U S A 104:12726–12731

    Article  CAS  Google Scholar 

  5. Alper H et al (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A 102:12678–12683

    Article  CAS  Google Scholar 

  6. Alper H et al (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  CAS  Google Scholar 

  7. Jensen PR, Hammer K (1998) Artificial promoters for metabolic optimization. Biotechnol Bioeng 58:191–195

    Article  CAS  Google Scholar 

  8. Jensen PR, Hammer K (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64:82–87

    CAS  Google Scholar 

  9. Ellis T (2009) Synthesis and screening of regulatory component libraries for synthetic biology. Protoc Exch. doi:10.1038/nprot.2009.79

    Google Scholar 

  10. Ellis T, Wang X, Collins JJ (2009) Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat Biotechnol 27:465–471

    Article  CAS  Google Scholar 

  11. Warren DJ (2011) Preparation of highly efficient electrocompetent Escherichia coli using glycerol/mannitol density step centrifugation. Anal Biochem 413:206–207

    Article  CAS  Google Scholar 

  12. Amberg DC, Burke D, Strathern JN (2005) Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual. CSHL, New York

    Google Scholar 

  13. Jeppsson M et al (2003) The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast 20:1263–1272

    Article  CAS  Google Scholar 

  14. Quan J, Tian J (2011) Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc 6:242–251

    Article  CAS  Google Scholar 

  15. Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One 4:e6441

    Article  Google Scholar 

  16. Solem C, Jensen PR (2002) Modulation of gene expression made easy. Appl Environ Microbiol 68:2397–2403

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Weenink, T., Ellis, T. (2013). Creation and Characterization of Component Libraries for Synthetic Biology. In: Polizzi, K., Kontoravdi, C. (eds) Synthetic Biology. Methods in Molecular Biology, vol 1073. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-625-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-625-2_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-624-5

  • Online ISBN: 978-1-62703-625-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics