Skip to main content

Investigating Gene Promoter Methylation in a Mouse Model of Status Epilepticus

  • Protocol
  • First Online:
Tiling Arrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1067))

Abstract

Epigenetic modification of DNA by methylation of the cytosine present in CG dinucleotides constitutes a key regulatory mechanism in the control of gene expression in neurological diseases. In this chapter, we describe an in-depth methodology of methylated DNA immunoprecipitation used in combination with tiling microarrays (MeDIP-chip) in order to analyze genome-wide gene promoter methylation in the hippocampus of mice following status epilepticus (prolonged seizure). While a specific mouse model and array format are described, the method can be applied to DNA from many tissues to analyze the methylation status of promoter regions across whole genomes, using a wide range of available array formats (both custom designed and commercially catalogued). We conclude the chapter with the description of bisulfite sequencing validation of MeDIP-chip results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feng J, Fan G (2009) The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int Rev Neurobiol 89:67–84

    Article  PubMed  CAS  Google Scholar 

  2. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610

    Article  PubMed  CAS  Google Scholar 

  3. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  PubMed  CAS  Google Scholar 

  4. Iraola-Guzman S, Estivill X, Rabionet R (2011) DNA methylation in neurodegenerative disorders: a missing link between genome and environment? Clin Genet 80:1–14

    Article  PubMed  CAS  Google Scholar 

  5. Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53:857–869

    Article  PubMed  CAS  Google Scholar 

  6. Miller-Delaney SF, Das S, Sano T, Jimenez-Mateos EM, Bryan K, Buckley PG et al (2012) Differential DNA methylation patterns define status epilepticus and epileptic tolerance. J Neurosci 32:1577–1588

    Article  PubMed  CAS  Google Scholar 

  7. Urdinguio RG, Sanchez-Mut JV, Esteller M (2009) Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 8:1056–1072

    Article  PubMed  CAS  Google Scholar 

  8. Guo JU, Ma DK, Mo H, Ball MP, Jang MH, Bonaguidi MA et al (2011) Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 14:1345–1351

    Article  PubMed  CAS  Google Scholar 

  9. Levenson JM, Roth TL, Lubin FD, Miller CA, Huang IC, Desai P et al (2006) Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 281:15763–15773

    Article  PubMed  CAS  Google Scholar 

  10. Zhu Q, Wang L, Zhang Y, Zhao FH, Luo J, Xiao Z et al (2012) Increased expression of DNA methyltransferase 1 and 3a in human temporal lobe epilepsy. J Mol Neurosci 46:420–426

    Article  PubMed  CAS  Google Scholar 

  11. Kobow K, Jeske I, Hildebrandt M, Hauke J, Hahnen E, Buslei R et al (2009) Increased reelin promoter methylation is associated with granule cell dispersion in human temporal lobe epilepsy. J Neuropathol Exp Neurol 68:356–364

    Article  PubMed  CAS  Google Scholar 

  12. Aminoff MJ, Simon RP (1980) Status epilepticus. Causes, clinical features and consequences in 98 patients. Am J Med 69:657–666

    Article  PubMed  CAS  Google Scholar 

  13. Fujikawa DG, Itabashi HH, Wu A, Shinmei SS (2000) Status epilepticus-induced neuronal loss in humans without systemic complications or epilepsy. Epilepsia 41:981–991

    Article  PubMed  CAS  Google Scholar 

  14. Hatazaki S, Bellver-Estelles C, Jimenez-Mateos EM, Meller R, Bonner C, Murphy N et al (2007) Microarray profile of seizure damage-refractory hippocampal CA3 in a mouse model of epileptic preconditioning. Neuroscience 150:467–477

    Article  PubMed  CAS  Google Scholar 

  15. Jimenez-Mateos EM, Hatazaki S, Johnson MB, Bellver-Estelles C, Mouri G, Bonner C et al (2008) Hippocampal transcriptome after status epilepticus in mice rendered seizure damage-tolerant by epileptic preconditioning features suppressed calcium and neuronal excitability pathways. Neurobiol Dis 32:442–453

    Article  PubMed  CAS  Google Scholar 

  16. Jimenez-Mateos EM, Henshall DC (2009) Seizure preconditioning and epileptic tolerance: models and mechanisms. Int J Physiol Pathophysiol Pharmacol 1:180–191

    PubMed  CAS  Google Scholar 

  17. Jimenez-Mateos EM, Mouri G, Conroy RM, Henshall DC (2010) Epileptic tolerance is associated with enduring neuroprotection and uncoupling of the relationship between CA3 damage, neuropeptide Y rearrangement and spontaneous seizures following intra-amygdala kainic acid-induced status epilepticus in mice. Neuroscience 171:556–565

    Article  PubMed  CAS  Google Scholar 

  18. Jimenez-Mateos EM, Engel T, Merino-Serrais P, McKiernan RC, Tanaka K, Mouri G et al (2012) Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med 18:1087–1094

    Article  PubMed  CAS  Google Scholar 

  19. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schubeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    Article  PubMed  CAS  Google Scholar 

  20. Buckley PG, Das S, Bryan K, Watters KM, Alcock L, Koster J et al (2011) Genome-wide DNA methylation analysis of neuroblastic tumors reveals clinically relevant epigenetic events and large-scale epigenomic alterations localized to telomeric regions. Int J Cancer 128:2296–2305

    Article  PubMed  CAS  Google Scholar 

  21. Das S, Bryan K, Buckley PG, Piskareva O, Bray IM, Foley N et al (2012) Modulation of neuroblastoma disease pathogenesis by an extensive network of epigenetically regulated microRNAs. Oncogene Epub ahead of print

    Google Scholar 

  22. Das S, Foley N, Bryan K, Watters KM, Bray I, Murphy DM et al (2010) MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation. Cancer Res 70:7874–7881

    Article  PubMed  CAS  Google Scholar 

  23. Paxinos G, Franklin KBJ (1997) The mouse brain in stereotaxic coordinates. Academic, San Diego, CA

    Google Scholar 

  24. Lein ES, Zhao X, Gage FH (2004) Defining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridization. J Neurosci 24:3879–3889

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science Foundation of Ireland (Award 08/IN.1./B1875) and by the Medical Research Charities Group/Health Research Board Joint Funding Scheme through Brainwave, the Irish Epilepsy Association.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Miller-Delaney, S.F.C., Das, S., Stallings, R.L., Henshall, D.C. (2013). Investigating Gene Promoter Methylation in a Mouse Model of Status Epilepticus . In: Lee, TL., Shui Luk, A. (eds) Tiling Arrays. Methods in Molecular Biology, vol 1067. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-607-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-607-8_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-606-1

  • Online ISBN: 978-1-62703-607-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics