Skip to main content

Application of the Simple and Efficient Mpeak Modeling in Binding Peak Identification in ChIP-Chip Studies

  • Protocol
  • First Online:
Tiling Arrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1067))

  • 1285 Accesses

Abstract

Chromatin immunoprecipitation and hybridization of high-density promoter microarray (ChIP-chip) is a powerful strategy to identify target genes for specific transcription factors and other DNA-binding nuclear proteins in a genome-wide manner. Services of core facilities have greatly enhanced the accessibility of these technologies to new investigators to the field. The Mpeak modeling is a simple and efficient computer program, capable of identifying chromatin-binding peaks in ChIP-chip datasets. It utilizes advanced statistical computation, but yet offers a simple procedure with user inputs on parameters in its operation. The Mpeak-fitted signals are tabulation in convenient formats and can be visualized in various genome-display graphic programs, including SignalMap and Genome Browser, and analyzed together with other datasets, such as microarray expression patterns. Several research groups have used the Mpeak program in their respective ChIP-chip studies. The various features of Mpeak will be illustrated with ChIP-chip datasets from a study designed to identify the target genes for the sex-determining factor, SRY, in mouse embryonic gonads at the time of sex determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  2. Gonzaga-Jauregui C, Lupski JR, Gibbs RA (2012) Human genome sequencing in health and disease. Annu Rev Med 63:35–61

    Article  PubMed  CAS  Google Scholar 

  3. Chang HW, Chuang LY, Tsai MT, Yang CH (2012) The importance of integrating SNP and cheminformatics resources to pharmacogenomics. Curr Drug Metab 13:991–999

    Article  PubMed  CAS  Google Scholar 

  4. Reyes A, Semenkovich NP, Whiteson K, Rohwer F, Gordon JI (2012) Going viral: next-generation sequencing applied to phage populations in the human gut. Nat Rev Microbiol 10:607–617

    Article  PubMed  CAS  Google Scholar 

  5. Luciani F, Bull RA, Lloyd AR (2012) Next generation deep sequencing and vaccine design: today and tomorrow. Trends Biotechnol 30:443–452

    Article  PubMed  CAS  Google Scholar 

  6. Rizzi E, Lari M, Gigli E, De Bellis G, Caramelli D (2012) Ancient DNA studies: new perspectives on old samples. Genet Sel Evol 44:21

    Article  PubMed  CAS  Google Scholar 

  7. Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21:1794–1805

    Article  PubMed  CAS  Google Scholar 

  8. Casals F, Idaghdour Y, Hussin J, Awadalla P (2012) Next-generation sequencing approaches for genetic mapping of complex diseases. J Neuroimmunol 248:10–22

    Article  PubMed  CAS  Google Scholar 

  9. Paux E, Sourdille P, Mackay I, Feuillet C (2012) Sequence-based marker development in wheat: advances and applications to breeding. Biotechnol Adv 30:1071–1088

    Article  PubMed  CAS  Google Scholar 

  10. Mueller TF, Mas VR (2012) Microarray applications in nephrology with special focus on transplantation. J Nephrol 25:589–602

    Article  PubMed  Google Scholar 

  11. Lucas SM, Heath EI (2012) Current challenges in development of differentially expressed and prognostic prostate cancer biomarkers. Prostate Cancer 2012:640968

    Article  PubMed  Google Scholar 

  12. Kuhn RM, Haussler D, Kent WJ (2013) The UCSC genome browser and associated tools. Brief Bioinform 14(2):144–161, Epub ahead of print

    Article  PubMed  CAS  Google Scholar 

  13. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  14. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P et al (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15(10):1451–1455

    Article  PubMed  CAS  Google Scholar 

  15. Liu T, Ortiz JA, Taing L, Meyer CA, Lee B, Zhang Y et al (2011) Cistrome: an integrative platform for transcriptional regulation studies. Genome Biol 12:R83

    Article  PubMed  CAS  Google Scholar 

  16. Kim TH, Ren B (2006) Genome-wide analysis of protein-DNA interactions. Annu Rev Genomics Hum Genet 7:81–102

    Article  PubMed  Google Scholar 

  17. Barski A, Zhao K (2009) Genomic location analysis by ChIP-Seq. J Cell Biochem 107:11–18

    Article  PubMed  CAS  Google Scholar 

  18. Cuddapah S, Jothi R, Schones DE, Roh TY, Cui K, Zhao K (2009) Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res 19:24–32

    Article  PubMed  CAS  Google Scholar 

  19. Jothi R, Cuddapah S, Barski A, Cui K, Zhao K (2008) Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res 36:5221–5231

    Article  PubMed  CAS  Google Scholar 

  20. Zheng M, Barrera LO, Ren B, Wu YN (2007) ChIP-chip: data, model, and analysis. Biometrics 63:787–796

    Article  PubMed  CAS  Google Scholar 

  21. Bolton EC, So AY, Chaivorapol C, Haqq CM, Li H, Yamamoto KR (2007) Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev 21:2005–2017

    Article  PubMed  CAS  Google Scholar 

  22. Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD et al (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128:1231–1245

    Article  PubMed  CAS  Google Scholar 

  23. Zhang Y, Wu W, Cheng Y, King DC, Harris RS, Taylor J (2009) Primary sequence and epigenetic determinants of in vivo occupancy of genomic DNA by GATA1. Nucleic Acids Res 37:7024–7038

    Article  PubMed  CAS  Google Scholar 

  24. Smeenk L, van Heeringen SJ, Koeppel M, van Driel MA, Bartels SJ, Akkers RC et al (2008) Characterization of genome-wide p53-binding sites upon stress response. Nucleic Acids Res 36:3639–3654

    Article  PubMed  CAS  Google Scholar 

  25. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc, Ser B 57:289–300

    Google Scholar 

  26. Beverdam A, Koopman P (2006) Expression profiling of purified mouse gonadal somatic cells during the critical time window of sex determination reveals novel candidate genes for human sexual dysgenesis syndromes. Hum Mol Genet 15:417–431

    Article  PubMed  CAS  Google Scholar 

  27. Jameson SA, Natarajan A, Cool J, DeFalco T, Maatouk DM, Mork L et al (2012) Temporal transcriptional profiling of somatic and germ cells reveals biased lineage priming of sexual fate in the fetal mouse gonad. PLoS Genet 8:e1002575

    Article  PubMed  CAS  Google Scholar 

  28. Nef S, Schaad O, Stallings NR, Cederroth CR, Pitetti JL, Schaer G et al (2005) Gene expression during sex determination reveals a robust female genetic program at the onset of ovarian development. Dev Biol 287(2):361–377

    Article  PubMed  CAS  Google Scholar 

  29. Gautier L, Moller M, Friis-Hansen L, Knudsen S (2004) Alternative mapping of probes to genes for Affymetrix chips. BMC Bioinformatics 5:111

    Article  PubMed  Google Scholar 

  30. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15

    Article  PubMed  Google Scholar 

  31. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3

    Google Scholar 

  32. Wu JB, Chen K, Li Y, Lau YF, Shih JC (2009) Regulation of monoamine oxidase A by the SRY gene on the Y chromosome. FASEB J 23:4029–4038

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was partially supported by a merit grant from the US Department of Veterans Affairs. YFCL is a Research Career Scientist of the DVA.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zheng, M., Li, Y., Lau, YF.C. (2013). Application of the Simple and Efficient Mpeak Modeling in Binding Peak Identification in ChIP-Chip Studies. In: Lee, TL., Shui Luk, A. (eds) Tiling Arrays. Methods in Molecular Biology, vol 1067. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-607-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-607-8_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-606-1

  • Online ISBN: 978-1-62703-607-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics