Skip to main content

Genetic Systems for Monitoring Interactions of Transmembrane Domains in Bacterial Membranes

  • Protocol
  • First Online:
Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1063))

Abstract

In recent years several systems have been developed to study interactions of TM domains within the inner membrane of the Gram-negative bacterium Escherichia coli. Mostly, a transmembrane domain of interest is fused to a soluble DNA-binding domain, which dimerizes in E. coli cytoplasm after interactions of the transmembrane domains. The dimeric DNA-binding domain subsequently binds to a promoter/operator region and thereby activates or represses a reporter gene. In 1996 the first bacterial system has been introduced to measure interactions of TM helices within a bacterial membrane, which is based on fusion of a transmembrane helix of interest to the DNA-binding domain of the Vibrio cholerae ToxR protein. Interaction of a transmembrane helix of interest within the membrane environment results in dimerization of the DNA-binding domain in the bacterial cytoplasm, and the dimeric DNA-binding domain then binds to the DNA and activates a reporter gene. Subsequently, systems with improved features, such as the TOXCAT- or POSSYCCAT system, which allow screening of TM domain libraries, or the GALLEX system, which allows measuring heterotypic interactions of TM helices, have been developed and successfully applied. Here we briefly introduce the currently most applied systems and discuss their advantages together with their limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowie JU (2005) Solving the membrane protein folding problem. Nature 438(7068):581–589

    Article  PubMed  CAS  Google Scholar 

  2. Langosch D et al (1996) Dimerisation of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator. J Mol Biol 263(4):525–530

    Article  PubMed  CAS  Google Scholar 

  3. Russ WP, Engelman DM (1999) TOXCAT: a measure of transmembrane helix association in a biological membrane. Proc Natl Acad Sci USA 96(3):863–868

    Article  PubMed  CAS  Google Scholar 

  4. Gurezka R, Langosch D (2001) In vitro selection of membrane-spanning leucine zipper protein-protein interaction motifs using POSSYCCAT. J Biol Chem 276(49): 45580–45587

    Article  PubMed  CAS  Google Scholar 

  5. Schneider D, Engelman DM (2003) GALLEX, a measurement of heterologous association of transmembrane helices in a biological membrane. J Biol Chem 278(5):3105–3111

    Article  PubMed  CAS  Google Scholar 

  6. DiRita VJ, Mekalanos JJ (1991) Periplasmic interaction between two membrane regulatory proteins, ToxR and ToxS, results in signal transduction and transcriptional activation. Cell 64(1):29–37

    Article  PubMed  CAS  Google Scholar 

  7. Miller VL, Mekalanos JJ (1984) Synthesis of cholera toxin is positively regulated at the transcriptional level by toxR. Proc Natl Acad Sci USA 81(11):3471–3475

    Article  PubMed  CAS  Google Scholar 

  8. Miller VL, Taylor RK, Mekalanos JJ (1987) Cholera toxin transcriptional activator toxR is a transmembrane DNA binding protein. Cell 48(2):271–279

    Article  PubMed  Google Scholar 

  9. Kolmar H et al (1995) Membrane insertion of the bacterial signal transduction protein ToxR and requirements of transcription activation studied by modular replacement of different protein substructures. EMBO J 14(16):3895–3904

    PubMed  CAS  Google Scholar 

  10. Brosig B, Langosch D (1998) The dimerization motif of the glycophorin A transmembrane segment in membranes: importance of glycine residues. Protein Sci 7(4):1052–1056

    Article  PubMed  CAS  Google Scholar 

  11. Zhou FX et al (2001) Polar residues drive association of polyleucine transmembrane helices. Proc Natl Acad Sci USA 98(5):2250–2255

    Article  PubMed  CAS  Google Scholar 

  12. Kubatzky KF et al (2001) Self assembly of the transmembrane domain promotes signal transduction through the erythropoietin receptor. Curr Biol 11(2):110–115

    Article  PubMed  CAS  Google Scholar 

  13. Mendrola JM et al (2002) The single transmembrane domains of ErbB receptors self-associate in cell membranes. J Biol Chem 277(7):4704–4712

    Article  PubMed  CAS  Google Scholar 

  14. Laage R, Langosch D (1997) Dimerization of the synaptic vesicle protein synaptobrevin (vesicle-associated membrane protein) II depends on specific residues within the transmembrane segment. Eur J Biochem 249(2):540–546

    Article  PubMed  CAS  Google Scholar 

  15. Huber O, Kemler R, Langosch D (1999) Mutations affecting transmembrane segment interactions impair adhesiveness of E-cadherin. J Cell Sci 112(Pt 23):4415–4423

    PubMed  CAS  Google Scholar 

  16. Li R et al (2004) Dimerization of the transmembrane domain of Integrin alphaIIb subunit in cell membranes. J Biol Chem 279(25):26666–26673

    Article  PubMed  CAS  Google Scholar 

  17. McClain MS et al (2003) Essential role of a GXXXG motif for membrane channel formation by Helicobacter pylori vacuolating toxin. J Biol Chem 278(14):12101–12108

    Article  PubMed  CAS  Google Scholar 

  18. Bowen ME, Engelman DM, Brunger AT (2002) Mutational analysis of synaptobrevin transmembrane domain oligomerization. Biochemistry 41(52):15861–15866

    Article  PubMed  CAS  Google Scholar 

  19. Russ WP, Engelman DM (2000) The GxxxG motif: a framework for transmembrane helix-helix association. J Mol Biol 296(3):911–919

    Article  PubMed  CAS  Google Scholar 

  20. Finger C, Escher C, Schneider D (2009) The single transmembrane domains of human receptor tyrosine kinases encode self-interactions. Sci Signal 2(89):ra56

    Article  PubMed  Google Scholar 

  21. Dawson JP, Weinger JS, Engelman DM (2002) Motifs of serine and threonine can drive association of transmembrane helices. J Mol Biol 316(3):799–805

    Article  PubMed  CAS  Google Scholar 

  22. Lindner E et al (2007) An extended ToxR POSSYCCAT system for positive and negative selection of self-interacting transmembrane domains. J Microbiol Methods 69(2):298–305

    Article  PubMed  CAS  Google Scholar 

  23. Herrmann JR et al (2010) Ionic interactions promote transmembrane helix-helix association depending on sequence context. J Mol Biol 396(2):452–461

    Article  PubMed  CAS  Google Scholar 

  24. Lindner E, Langosch D (2006) A ToxR-based dominant-negative system to investigate heterotypic transmembrane domain interactions. Proteins 65(4):803–807

    Article  PubMed  CAS  Google Scholar 

  25. Gerber D, Shai Y (2001) In vivo detection of hetero-association of glycophorin-A and its mutants within the membrane. J Biol Chem 276(33):31229–31232

    Article  PubMed  CAS  Google Scholar 

  26. Markham BE, Little JW, Mount DW (1981) Nucleotide sequence of the lexA gene of Escherichia coli K-12. Nucleic Acids Res 9(16):4149–4161

    Article  PubMed  CAS  Google Scholar 

  27. Horii T et al (1981) Regulation of SOS functions: purification of E. coli LexA protein and determination of its specific site cleaved by the RecA protein. Cell 27(3 Pt 2):515–522

    Article  PubMed  CAS  Google Scholar 

  28. Schnarr M et al (1991) DNA binding properties of the LexA repressor. Biochimie 73(4):423–431

    Article  PubMed  CAS  Google Scholar 

  29. Porte D et al (1995) Fos leucine zipper variants with increased association capacity. J Biol Chem 270(39):22721–22730

    Article  PubMed  CAS  Google Scholar 

  30. Dmitrova M et al (1998) A new LexA-based genetic system for monitoring and analyzing protein heterodimerization in Escherichia coli. Mol Gen Genet 257(2):205–212

    Article  PubMed  CAS  Google Scholar 

  31. Schneider D, Engelman DM (2004) Involvement of transmembrane domain interactions in signal transduction by alpha/beta integrins. J Biol Chem 279(11):9840–9846

    Article  PubMed  CAS  Google Scholar 

  32. Schneider D, Engelman DM (2004) Motifs of two small residues can assist but are not sufficient to mediate transmembrane helix interactions. J Mol Biol 343(4):799–804

    Article  PubMed  CAS  Google Scholar 

  33. Escher C, Cymer F, Schneider D (2009) Two GxxxG-like motifs facilitate promiscuous interactions of the human ErbB transmembrane domains. J Mol Biol 389(1):10–16

    Article  PubMed  CAS  Google Scholar 

  34. King G, Dixon AM (2010) Evidence for role of transmembrane helix-helix interactions in the assembly of the Class II major histocompatibility complex. Mol Biosyst 6(9):1650–1661

    Article  PubMed  CAS  Google Scholar 

  35. Prodohl A et al (2005) Defining the structural basis for assembly of a transmembrane cytochrome. J Mol Biol 350(4):744–756

    Article  PubMed  Google Scholar 

  36. Cymer F, Schneider D (2009) A single glutamate residue controls the oligomerisation, function and stability of the aquaglyceroporin GlpF. Biochemistry 49:279–286

    Article  Google Scholar 

  37. Prodöhl A et al (2007) A mutational study of transmembrane helix-helix interactions. Biochimie 89(11):1433–1437

    Article  PubMed  Google Scholar 

  38. Finger C et al (2006) The stability of transmembrane helix interactions measured in a biological membrane. J Mol Biol 358(5):1221–1228

    Article  PubMed  CAS  Google Scholar 

  39. Karimova G, Ullmann A, Ladant D (2001) Protein-protein interaction between Bacillus stearothermophilus tyrosyl-tRNA synthetase subdomains revealed by a bacterial two-hybrid system. J Mol Microbiol Biotechnol 3(1):73–82

    PubMed  CAS  Google Scholar 

  40. Gropp M et al (2001) Regulation of Escherichia coli RelA requires oligomerization of the C-terminal domain. J Bacteriol 183(2): 570–579

    Article  PubMed  CAS  Google Scholar 

  41. Lee H et al (2001) SeqA protein aggregation is necessary for SeqA function. J Biol Chem 276(37):34600–34606

    Article  PubMed  CAS  Google Scholar 

  42. Lehnik-Habrink M et al (2011) RNase Y in Bacillus subtilis: a natively disordered protein that is the functional equivalent of RNase E from Escherichia coli. J Bacteriol 193(19):5431–5441

    Article  PubMed  CAS  Google Scholar 

  43. Luo ZQ, Isberg RR (2004) Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc Natl Acad Sci USA 101(3):841–846

    Article  PubMed  CAS  Google Scholar 

  44. Duerig A et al (2009) Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev 23(1):93–104

    Article  PubMed  CAS  Google Scholar 

  45. Ladant D, Ullmann A (1999) Bordatella pertussis adenylate cyclase: a toxin with multiple talents. Trends Microbiol 7(4):172–176

    Article  PubMed  CAS  Google Scholar 

  46. Karimova G et al (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci USA 95(10):5752–5756

    Article  PubMed  CAS  Google Scholar 

  47. Ullmann A, Danchin A (1983) Role of cyclic-Amp in bacteria. Adv Cyclic Nucleotide Res 15:1–53

    CAS  Google Scholar 

  48. Karimova G, Ullmann A, Ladant D (2000) A bacterial two-hybrid system that exploits a cAMP signaling cascade in Escherichia coli. Methods Enzymol 328:59–73

    Article  PubMed  CAS  Google Scholar 

  49. Karimova G, Dautin N, Ladant D (2005) Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187(7):2233–2243

    Article  PubMed  CAS  Google Scholar 

  50. Karimova G, Robichon C, Ladant D (2009) Characterization of YmgF, a 72-residue inner membrane protein that associates with the Escherichia coli cell division machinery. J Bacteriol 191(1):333–346

    Article  PubMed  CAS  Google Scholar 

  51. Engelman DM et al (2003) Membrane protein folding: beyond the two stage model. FEBS Lett 555(1):122–125

    Article  PubMed  CAS  Google Scholar 

  52. Cymer F, Veerappan A, Schneider D (1818) Transmembrane helix-helix interactions are modulated by the sequence context and by lipid bilayer properties. Biochim Biophys Acta 4:963–973

    Google Scholar 

  53. Anbazhagan V, Schneider D (2010) The membrane environment modulates self-association of the human GpA TM domain—implications for membrane protein folding and transmembrane signaling. Biochim Biophys Acta 1798(10):1899–1907

    Article  PubMed  CAS  Google Scholar 

  54. Anbazhagan V, Cymer F, Schneider D (2010) Unfolding a transmembrane helix dimer: a FRET study in mixed micelles. Arch Biochem Biophys 495(2):159–164

    Article  PubMed  CAS  Google Scholar 

  55. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  56. Kolmar H et al (1994) Dimerization of Bence Jones proteins: linking the rate of transcription from an Escherichia coli promoter to the association constant of REIV. Biol Chem Hoppe Seyler 375(1):61–70

    Article  PubMed  CAS  Google Scholar 

  57. Duplay P, Szmelcman S (1987) Silent and functional changes in the periplasmic maltose-binding protein of Escherichia coli K12. II. Chemotaxis towards maltose. J Mol Biol 194(4):675–678

    Article  PubMed  CAS  Google Scholar 

  58. Treptow NA, Shuman HA (1985) Genetic evidence for substrate and periplasmic-binding-protein recognition by the MalF and MalG proteins, cytoplasmic membrane components of the Escherichia coli maltose transport system. J Bacteriol 163(2):654–660

    PubMed  CAS  Google Scholar 

  59. Kolmar H et al (1995) Immunoglobulin mutant library genetically screened for folding stability exploiting bacterial signal transduction. J Mol Biol 251(4):471–476

    Article  PubMed  CAS  Google Scholar 

  60. Herrmann JR et al (2009) Complex patterns of histidine, hydroxylated amino acids and the GxxxG motif mediate high-affinity transmembrane domain interactions. J Mol Biol 385(3): 912–923

    Article  PubMed  CAS  Google Scholar 

  61. Lemmon MA et al (1992) Sequence specificity in the dimerization of transmembrane alpha-helices. Biochemistry 31(51):12719–12725

    Article  PubMed  CAS  Google Scholar 

  62. Sulistijo ES, Jaszewski TM, MacKenzie KR (2003) Sequence-specific dimerization of the transmembrane domain of the “BH3-only” protein BNIP3 in membranes and detergent. J Biol Chem 278(51):51950–51956

    Article  PubMed  CAS  Google Scholar 

  63. Duplay P et al (1987) Silent and functional changes in the periplasmic maltose-binding protein of Escherichia coli K12. I. Transport of maltose. J Mol Biol 194(4):663–673

    Article  PubMed  CAS  Google Scholar 

  64. Bormann BJ, Knowles WJ, Marchesi VT (1989) Synthetic peptides mimic the assembly of transmembrane glycoproteins. J Biol Chem 264(7):4033–4037

    PubMed  CAS  Google Scholar 

  65. Schneider D et al (2007) From interactions of single transmembrane helices to folding of alpha-helical membrane proteins: analyzing transmembrane helix-helix interactions in bacteria. Curr Protein Pept Sci 8(1):45–61

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Stiftung Rheinland-Pfalz für Innovation, the Deutsche Forschungsgemeinschaft, the Research Center “Complex Materials” (COMATT), and the University of Mainz.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tome, L., Steindorf, D., Schneider, D. (2013). Genetic Systems for Monitoring Interactions of Transmembrane Domains in Bacterial Membranes. In: Ghirlanda, G., Senes, A. (eds) Membrane Proteins. Methods in Molecular Biology, vol 1063. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-583-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-583-5_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-582-8

  • Online ISBN: 978-1-62703-583-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics