Skip to main content

Inhibitors of Tissue-Nonspecific Alkaline Phosphatase (TNAP): From Hits to Leads

  • Protocol
  • First Online:
Phosphatase Modulators

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1053))

Abstract

The optimization of active hits, commonly derived from high-throughput screening campaigns (see Chapters 2 and 4), into promising small-molecule lead compounds is one of the fundamental steps in early drug discovery. Directions taken during this stage can have important consequences reaching through lead optimization into preclinical development and beyond. Considering the ever-increasing costs of preclinical as well as clinical development phases (DiMasi et al., J Health Econ 22:151–185, 2003) the choices made at the early stages of drug discovery can have a real impact on the likelihood of the best lead becoming a viable candidate (Bleicher et al., Nat Rev Drug Discov 2:369–378, 2003). Thus it is important to utilize proven and robust methodologies to turn promising hits into suitable lead series with propitious characteristics. Here, we describe such an approach using the example of a tissue-nonspecific alkaline phosphatase (see Chapter 3) inhibitor developed in our group (Sidique et al., Bioorg Med Chem Lett 19:222–225, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22:151–185

    Article  PubMed  Google Scholar 

  2. Bleicher KH, Bohm HJ, Muller K et al (2003) Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2:369–378

    Article  PubMed  CAS  Google Scholar 

  3. Sidique S, Ardecky R, Su Y et al (2009) Design and synthesis of pyrazole derivatives as potent and selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). Bioorg Med Chem Lett 19:222–225

    Article  PubMed  CAS  Google Scholar 

  4. Barh D, Ahmad S, Bhattacharjee A (2012) In silico and ultrahigh-throughput screenings (uHTS) in drug discovery: an overview. Pharmaceutical biotechnology. Wiley-VCH Verlag, Weinheim, Germany, pp 451–490

    Google Scholar 

  5. Zoete V, Grosdidier A, Michielin O (2009) Docking, virtual high throughput screening and in silico fragment-based drug design. J Cell Mol Med 13:238–248

    Article  PubMed  CAS  Google Scholar 

  6. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740

    Article  PubMed  CAS  Google Scholar 

  7. Pinkerton AB, Vernier J-M, Cube RV, Hutchinson JH (2006) Inventor Heterocyclic indanone potentiators of metabotropic glutamate receptors. USA WO Patent WO/2006/047237

    Google Scholar 

  8. Sergienko E, Su Y, Chan X et al (2009) Identification and characterization of novel tissue-nonspecific alkaline phosphatase inhibitors with diverse modes of action. J Biomol Screen 14:824–837

    Article  PubMed  CAS  Google Scholar 

  9. Sergienko EA, Millan JL (2010) High-throughput screening of tissue-nonspecific alkaline phosphatase for identification of effectors with diverse modes of action. Nat Protoc 5:1431–1439

    Article  PubMed  CAS  Google Scholar 

  10. Kerns EH, Di L, Carter GT (2008) In vitro solubility assays in drug discovery. Curr Drug Metab 9:879–885

    Article  PubMed  CAS  Google Scholar 

  11. John S, Thangapandian S, Arooj M et al (2011) Development, evaluation and application of 3D QSAR Pharmacophore model in the discovery of potential human renin inhibitors. BMC Bioinformatics 12 Suppl 14, S4

    Google Scholar 

  12. Binns M, de Visser SP, Theodoropoulos C (2012) Modeling flexible pharmacophores with distance geometry, scoring, and bound stretching. J Chem Inf Model 52:577–588

    Article  PubMed  CAS  Google Scholar 

  13. Tai W, Lu T, Yuan H et al (2011) Pharmacophore modeling and virtual screening studies to identify new c-Met inhibitors. J Mol Model 1–14

    Google Scholar 

  14. Arnold K, Bordoli L, Kopp J et al (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  PubMed  CAS  Google Scholar 

  15. Kozlenkov A, Le Du MH, Cuniasse P et al (2004) Residues determining the binding specificity of uncompetitive inhibitors to tissue-nonspecific alkaline phosphatase. J Bone Miner Res 19:1862–1872

    Article  PubMed  CAS  Google Scholar 

  16. Taha MO, Bustanji Y, Al-Bakri AG et al (2007) Discovery of new potent human protein tyrosine phosphatase inhibitors via pharmacophore and QSAR analysis followed by in silico screening. J Mol Graph Model 25:870–884

    Article  PubMed  CAS  Google Scholar 

  17. Zampieri D, Mamolo MG, Laurini E et al (2009) Synthesis, biological evaluation, and three-dimensional in silico pharmacophore model for sigma(1) receptor ligands based on a series of substituted benzo[d]oxazol-2(3H)-one derivatives. J Med Chem 52:5380–5393

    Article  PubMed  CAS  Google Scholar 

  18. Kariv I, Cao H, Oldenburg KR (2001) Development of a high throughput equilibrium dialysis method. J Pharm Sci 90:580–587

    Article  CAS  Google Scholar 

  19. Kansy M, Senner F, Gubernator K (1998) Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem 41:1007–1010

    Article  CAS  Google Scholar 

  20. Dahl R, Bravo Y, Sharma V et al (2011) Potent, selective, and orally available benzoisothiazolone phosphomannose isomerase inhibitors as probes for congenital disorder of glycosylation Ia. J Med Chem 54:3661–3668

    Article  CAS  Google Scholar 

  21. Lin JH, Lu AY (1997) Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev 49:403–449

    PubMed  CAS  Google Scholar 

  22. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44: 235–249

    Article  PubMed  CAS  Google Scholar 

  23. Banker MJ, Clark TH et al (2003) Development and validation of a 96-well equilibrium dialysis apparatus for measuring plasma protein binding. J Pharm Sci 92:967–974

    Article  PubMed  CAS  Google Scholar 

  24. Di L, Kerns EH et al (2008) Applications of high throughput microsomal stability assay in drug discovery. Comb Chem High Throughput Screen 11:469–476

    Article  CAS  Google Scholar 

  25. Guengerich FP (1989) Oxidation of halogenated compounds by cytochrome P-450, peroxidases, and model metalloporphyrins. J Biol Chem 264:17098–17205

    CAS  Google Scholar 

  26. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  27. Korfmacher WA, Cox KA et al (2001) Cassette-accelerated rapid rat screen: a systematic procedure for the dosing and liquid chromatography/atmospheric pressure ionization tandem mass spectrometric analysis of new chemical entities as part of new drug discovery. Rapid Commun Mass Spectrom 15: 335–340

    Article  PubMed  CAS  Google Scholar 

  28. Mei H, Korfmacher WA et al. (2006) Rapid in vivo oral screening in rats: reliability, acceptance criteria, and filtering efficiency. AAPS J 8:E493–500

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Teriete, P., Pinkerton, A.B., Cosford, N.D.P. (2013). Inhibitors of Tissue-Nonspecific Alkaline Phosphatase (TNAP): From Hits to Leads. In: Millán, J. (eds) Phosphatase Modulators. Methods in Molecular Biology, vol 1053. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-562-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-562-0_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-561-3

  • Online ISBN: 978-1-62703-562-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics