Skip to main content

Structure of Acid Phosphatases

  • Protocol
  • First Online:
Phosphatase Modulators

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1053))

Abstract

Acid phosphatases are enzymes that have been studied extensively due to the fact that their dysregulation is associated with pathophysiological conditions. This characteristic has been exploited for the development of diagnostic and therapeutic methods. As an example, prostatic acid phosphatase was the first marker for metastatic prostate cancer diagnosis and the dysregulation of tartrate resistant acid phosphatase is associated with abnormal bone resorption linked to osteoporosis.

The pioneering crystallization studies on prostatic acid phosphatase and mammalian tartrate-resistant acid phosphatase conformed significant milestones towards the elucidation of the mechanisms followed by these enzymes (Schneider et al., EMBO J 12:2609–2615, 1993). Acid phosphatases are also found in nonmammalian species such as bacteria, fungi, parasites, and plants, and most of them share structural similarities with mammalian acid phosphatase enzymes.

Acid phosphatase (EC 3.1.3.2) enzymes catalyze the hydrolysis of phosphate monoesters following the general equation (1).

$$ \text{Phosphate}\,\text{monoester}+{\text{H}}_{2}\text{O}\,\iff \text{alcohol}+\text{phosphate}$$
(1)

The general classification “acid phosphatase” relies only on the optimum acidic pH for the enzymatic activity in assay conditions using non-physiological substrates. These enzymes accept a wide range of substrates in vitro, ranging from small organic molecules to phosphoproteins, constituting a heterogeneous group of enzymes from the structural point of view. These structural differences account for the divergence in cofactor dependences and behavior against substrates, inhibitors, and activators. In this group only the tartrate-resistant acid phosphatase is a metallo-enzyme whereas the other members do not require metal-ion binding for their catalytic activity. In addition, tartrate-resistant acid phosphatase and erythrocytic acid phosphatase are not inhibited by l-(+)-tartrate ion while the prostatic acid phosphatase is tartrate-sensitive. This is an important difference that can be exploited in in vitro assays to differentiate between different kinds of phosphatase activity. The search for more sensitive and specific methods of detection in clinical laboratory applications led to the development of radioimmunoassays (RIA) for determination of prostatic acid phosphatase in serum. These methods permit the direct quantification of the enzyme regardless of its activity status. Therefore, an independent structural classification exists that helps to group these enzymes according to their structural features and mechanisms. Based on this we can distinguish the histidine acid phosphatases (Van Etten, Ann N Y Acad Sci 390:27–51, 1982), the low molecular weight protein tyrosine acid phosphatases and the metal-ion dependent phosphatases.

A note of caution is worthwhile mentioning here. The nomenclature of acid phosphatases has not been particularly easy for those new to the subject. Unfortunately, the acronym PAP is very common in the literature about purple acid phosphatases and prostatic acid phosphatase. In addition, LPAP is the acronym chosen to refer to the lysophosphatidic acid phosphatase which is a different enzyme. It is important to bear in mind this distinction while reviewing the literature to avoid confusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schneider G, Lindqvist Y, Vihko P (1993) Three-dimensional structure of rat acid phosphatase. EMBO J 12:2609–2615

    PubMed  CAS  Google Scholar 

  2. Vihko P (1978) Human prostatic acid phosphatase and its radioimmunoassay. Acta Universitatis Ouluensis, Series D Medica 33, Clinica Chemica 1:1–78

    Google Scholar 

  3. Van Etten RL (1982) Human prostatic acid phosphatase: a histidine phosphatase. Ann N Y Acad Sci 390:27–51

    Article  PubMed  Google Scholar 

  4. Lindqvist Y, Schneider G, Vihko P (1994) Crystal structures of rat acid phosphatase complexed with the transition-state analogs vanadate and molybdate. Implications for the reaction mechanism. Eur J Biochem 221:139–142

    Article  PubMed  CAS  Google Scholar 

  5. Lindqvist Y, Schneider G, Vihko P (1993) Three-dimensional structure of rat acid phosphatase in complex with L(+)-tartrate. J Biol Chem 268:20744–20746

    PubMed  CAS  Google Scholar 

  6. Porvari KS, Herrala AM, Kurkela RM et al (1994) Site-directed mutagenesis of prostatic acid phosphatase. Catalytically important aspartic acid 258, substrate specificity, and oligomerization. J Biol Chem 269:22642–22646

    PubMed  CAS  Google Scholar 

  7. Luchter-Wasylewska E (2001) Cooperative kinetics of human prostatic acid phosphatase. Biochim Biophys Acta 1548:257–264

    Article  PubMed  CAS  Google Scholar 

  8. Singh H, Felts RL, Schuermann JP et al (2009) Crystal Structures of the histidine acid phosphatase from Francisella tularensis provide insight into substrate recognition. J Mol Biol 394:893–904

    Article  PubMed  CAS  Google Scholar 

  9. Peters C, Geier C, Pohlmann R et al (1989) High degree of homology between primary structure of human lysosomal acid phosphatase and human prostatic acid phosphatase. Biol Chem Hoppe Seyler 370:177–181

    Article  PubMed  CAS  Google Scholar 

  10. Pohlmann R, Krentler C, Schmidt B et al (1988) Human lysosomal acid phosphatase: cloning, expression and chromosomal assignment. EMBO J 7:2343–2350

    PubMed  CAS  Google Scholar 

  11. Quintero IB, Araujo CL, Pulkka AE et al (2007) Prostatic acid phosphatase is not a prostate specific target. Cancer Res 67:6549–6554

    Article  PubMed  CAS  Google Scholar 

  12. Gottschalk S, Waheed A, Schmidt B et al (1989) Sequential processing of lysosomal acid phosphatase by a cytoplasmic thiol proteinase and a lysosomal aspartyl proteinase. EMBO J 8:3215–3219

    PubMed  CAS  Google Scholar 

  13. Zylka MJ, Sowa NA, Taylor-Blake B et al (2008) Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine. Neuron 60:111–122

    Article  PubMed  CAS  Google Scholar 

  14. Hurt JK, Coleman JL, Fitzpatrick BJ et al (2012) Prostatic acid phosphatase is required for the antinociceptive effects of thiamine and benfotiamine. PLoS One 7:e48562

    Article  CAS  Google Scholar 

  15. Li HC, Chernoff J, Chen LB et al (1984) A phosphotyrosyl-protein phosphatase activity associated with acid phosphatase from human prostate gland. Eur J Biochem 138:45–51

    Article  PubMed  CAS  Google Scholar 

  16. Lin MF, DaVolio J, Garcia-Arenas R (1992) Expression of human prostatic acid phosphatase activity and the growth of prostate carcinoma cells. Cancer Res 52:4600–4607

    PubMed  CAS  Google Scholar 

  17. Veeramani S, Chou YW, Lin FC et al (2012) Reactive oxygen species induced by p66Shc longevity protein mediate nongenomic androgen action via tyrosine phosphorylation signaling to enhance tumorigenicity of prostate cancer cells. Free Radic Biol Med 53:95–108

    Article  PubMed  CAS  Google Scholar 

  18. Campbell HD, Dionysius DA, Keough DT et al (1978) Iron-containing acid phosphatases: comparison of the enzymes from beef spleen and pig allantoic fluid. Biochem Biophys Res Commun 82:615–620

    Article  PubMed  CAS  Google Scholar 

  19. Davis JC, Averill BA (1982) Evidence for a spin-coupled binuclear iron unit at the active site of the purple acid phosphatase from beef spleen. Proc Natl Acad Sci USA 79:4623–4627

    Article  CAS  Google Scholar 

  20. Oddie GW, Schenk G, Angel NZ et al (2000) Structure, function, and regulation of tartrate-resistant acid phosphatase. Bone 27:575–584

    Article  PubMed  CAS  Google Scholar 

  21. Halleen JM, Raisanen S, Salo JJ et al (1999) Intracellular fragmentation of bone resorption products by reactive oxygen species generated by osteoclastic tartrate-resistant acid phosphatase. J Biol Chem 274:22907–22910

    Article  PubMed  CAS  Google Scholar 

  22. Antanaitis BC, Aisen P, Lilienthal HR (1983) Physical characterization of two-iron uteroferrin. Evidence for a spin-coupled binuclear iron cluster. J Biol Chem 258:3166–3172

    PubMed  CAS  Google Scholar 

  23. Ljusberg J, Ek-Rylander B, Andersson G (1999) Tartrate-resistant purple acid phosphatase is synthesized as a latent proenzyme and activated by cysteine proteinases. Biochem J 343(Pt 1):63–69

    Article  PubMed  CAS  Google Scholar 

  24. Lam WK, Eastlund DT, Li CY et al (1978) Biochemical properties of tartrate-resistant acid phosphatase in serum of adults and children. Clin Chem 24:1105–1108

    CAS  Google Scholar 

  25. Janckila AJ, Nakasato YR, Neustadt DH et al (2003) Disease-specific expression of tartrate-resistant acid phosphatase isoforms. J Bone Miner Res 18:1916–1919

    Article  PubMed  CAS  Google Scholar 

  26. Andersson G, Lindunger A, Ek-Rylander B (1989) Isolation and characterization of skeletal acid ATPase–a new osteoclast marker? Connect Tissue Res 20:151–158

    Article  PubMed  CAS  Google Scholar 

  27. Lam KW, Yam LT (1977) Biochemical characterization of the tartrate-resistant acid phosphatase of human spleen with leukemic reticuloendotheliosis as a pyrophosphatase. Clin Chem 23:89–94

    PubMed  CAS  Google Scholar 

  28. Schlosnagle DC, Bazer FW, Tsibris JC et al (1974) An iron-containing phosphatase induced by progesterone in the uterine fluids of pigs. J Biol Chem 249:7574–7579

    PubMed  CAS  Google Scholar 

  29. Hayman AR, Warburton MJ, Pringle JA et al (1989) Purification and characterization of a tartrate-resistant acid phosphatase from human osteoclastomas. Biochem J 261:601–609

    PubMed  CAS  Google Scholar 

  30. Lindqvist Y, Johansson E, Kaija H et al (1999) Three-dimensional structure of a mammalian purple acid phosphatase at 2.2 A resolution with a mu-(hydr)oxo bridged di-iron center. J Mol Biol 291:135–147

    Article  PubMed  CAS  Google Scholar 

  31. Kaija H (2002) Tartrate-resistant acid phosphatase: three-dimensional structure and structure-based functional studies. Oulu University Press, Oulu

    Google Scholar 

  32. Schenk G, Elliott TW, Leung E et al (2008) Crystal structures of a purple acid phosphatase, representing different steps of this enzyme’s catalytic cycle. BMC Struct Biol 8:6

    Article  PubMed  Google Scholar 

  33. Barford D, Das AK, Egloff MP (1998) The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct 27:133–164

    Article  PubMed  CAS  Google Scholar 

  34. Bull H, Murray PG, Thomas D et al (2002) Acid phosphatases. Mol Pathol 55:65–72

    Article  PubMed  CAS  Google Scholar 

  35. Wo YY, McCormack AL, Shabanowitz J et al (1992) Sequencing, cloning, and expression of human red cell-type acid phosphatase, a cytoplasmic phosphotyrosyl protein phosphatase. J Biol Chem 267:10856–10865

    PubMed  CAS  Google Scholar 

  36. Zhang M, Stauffacher CV, Lin D et al (1998) Crystal structure of a human low molecular weight phosphotyrosyl phosphatase. Implications for substrate specificity. J Biol Chem 273:21714–21720

    Article  PubMed  CAS  Google Scholar 

  37. Pandey SK, Yu XX, Watts LM et al (2007) Reduction of low molecular weight protein-tyrosine phosphatase expression improves hyperglycemia and insulin sensitivity in obese mice. J Biol Chem 282:14291–14299

    Article  PubMed  CAS  Google Scholar 

  38. Chiarugi P, Cirri P, Marra F et al (1997) LMW-PTP is a negative regulator of insulin-mediated mitotic and metabolic signalling. Biochem Biophys Res Commun 238:676–682

    Article  PubMed  CAS  Google Scholar 

  39. Maccari R, Ottana R, Ciurleo R et al (2009) Structure-based optimization of benzoic acids as inhibitors of protein tyrosine phosphatase 1B and low molecular weight protein tyrosine phosphatase. ChemMedChem 4:957–962

    Article  PubMed  CAS  Google Scholar 

  40. Maccari R, Paoli P, Ottana R et al (2007) 5-Arylidene-2,4-thiazolidinediones as inhibitors of protein tyrosine phosphatases. Bioorg Med Chem 15:5137–5149

    Article  PubMed  CAS  Google Scholar 

  41. Watts NB (2003) Bisphosphonate treatment of osteoporosis. Clin Geriatr Med 19:395–414

    Article  PubMed  Google Scholar 

  42. Abul-Fadl MA, King EJ (1948) The inhibition of acid phosphatases by formaldehyde and its clinical application for the determination of serum acid phosphatases. J Clin Pathol 1:80–90

    Article  PubMed  CAS  Google Scholar 

  43. Beers SA, Schwender CF, Loughney DA et al (1996) Phosphatase inhibitors–III. Benzylaminophosphonic acids as potent inhibitors of human prostatic acid phosphatase. Bioorg Med Chem 4:1693–1701

    Article  PubMed  CAS  Google Scholar 

  44. Ortlund E, LaCount MW, Lebioda L (2003) Crystal structures of human prostatic acid phosphatase in complex with a phosphate ion and alpha-benzylaminobenzylphosphonic acid update the mechanistic picture and offer new insights into inhibitor design. Biochemistry 42:383–389

    Article  PubMed  CAS  Google Scholar 

  45. Abul-Fadl MA, King EJ (1949) Properties of the acid phosphatases of erythrocytes and of the human prostate gland. Biochem J 45:51–60

    CAS  Google Scholar 

  46. Valcour AA, Bowers GN Jr, McComb RB (1989) Evaluation of a kinetic method for prostatic acid phosphatase with use of self-indicating substrate, 2,6-dichloro-4-nitrophenyl phosphate. Clin Chem 35:939–945

    PubMed  CAS  Google Scholar 

  47. Winn SI, Watson HC, Harkins RN et al (1981) Structure and activity of phosphoglycerate mutase. Philos Trans R Soc Lond B Biol Sci 293:121–130

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Araujo, C.L., Vihko, P.T. (2013). Structure of Acid Phosphatases. In: Millán, J. (eds) Phosphatase Modulators. Methods in Molecular Biology, vol 1053. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-562-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-562-0_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-561-3

  • Online ISBN: 978-1-62703-562-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics