Skip to main content

Assembly of PNA-Tagged Small Molecules, Peptides, and Carbohydrates onto DNA Templates: Programming the Combinatorial Pairing and Inter-ligand Distance

  • Protocol
  • First Online:
Peptide Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1050))

Abstract

The biochemical stability and desirable hybridization properties of peptide nucleic acids (PNA) coupled to the robustness of the peptidic chemistry involved in their oligomerization make them an attractive nucleic acid tag to encode molecules and program their assembly into higher order oligomers. The ability to program the dimerization of ligands with controlled distance between the ligands has important applications in emulating multimeric interactions. Additionally, the ability to program different permutations of ligand assemblies in a combinatorial fashion provides access to a broad diversity and offers a rapid screening method for fragment based approaches to drug discovery. Herein, we describe protocols to covalently link diverse carbohydrates, peptides, or small molecules to PNA and combinatorially assemble them in solution onto libraries of DNA templates or onto DNA microarrays using a commercial platform without recourse to specialized equipment or heavy upfront investment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mammen M, Choi SK, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37:2755–2794

    Article  CAS  Google Scholar 

  2. Kiessling LL, Gestwicki JE, Strong LE (2006) Synthetic multivalent ligands as probes of signal transduction. Angew Chem Int Ed Engl 45:2348–2368

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Matsuura K, Hibino M, Ikeda T, Yamada Y, Kobayashi K (2004) Self-organized glycoclusters along DNA: effect of the spatial arrangement of galactoside residues on cooperative lectin recognition. Chemistry 10:352–359

    Article  PubMed  CAS  Google Scholar 

  4. Mammen M et al (1996) Optically controlled collisions of biological objects to evaluate potent polyvalent inhibitors of virus-cell adhesion. Chem Biol 3:757–763

    Article  PubMed  CAS  Google Scholar 

  5. Scheibe C, Bujotzek A, Dernedde J, Weber M, Seitz O (2011) DNA-programmed spatial screening of carbohydrate-lectin interactions. Chem Sci 2:770–775

    Article  CAS  Google Scholar 

  6. Gorska K, Huang KT, Chaloin O, Winssinger N (2009) DNA-templated homo- and heterodimerization of peptide nucleic acid encoded oligosaccharides that mimick the carbohydrate epitope of HIV. Angew Chem Int Ed Engl 48:7695–7700

    Article  PubMed  CAS  Google Scholar 

  7. Bernardes GJ, Gamblin DP, Davis BG (2006) The direct formation of glycosyl thiols from reducing sugars allows one-pot protein glycoconjugation. Angew Chem Int Ed Engl 45:4007–4011

    Article  PubMed  CAS  Google Scholar 

  8. Huang KT, Gorska K, Alvarez S, Barluenga S, Winssinger N (2011) Combinatorial self-assembly of glycan fragments into microarrays. Chembiochem 12:56–60

    Article  PubMed  CAS  Google Scholar 

  9. Matsuura K, Hibino M, Yamada Y, Kobayashi K (2001) Construction of glyco-clusters by self-organization of site-specifically glycosylated oligonucleotides and their cooperative amplification of lectin-recognition. J Am Chem Soc 123:357–358

    Article  PubMed  CAS  Google Scholar 

  10. Pourceau G, Meyer A, Vasseur JJ, Morvan F (2009) Synthesis of mannose and galactose oligonucleotide conjugates by bi-click chemistry. J Org Chem 74:1218–1222

    Article  PubMed  CAS  Google Scholar 

  11. Karskela M, Helkearo M, Virta P, Lonnberg H (2010) Synthesis of oligonucleotide glycoconjugates using sequential click and oximation ligations. Bioconjug Chem 21:748–755

    Article  PubMed  CAS  Google Scholar 

  12. Pourceau G et al (2010) Oligonucleotide carbohydrate-centered galactosyl cluster conjugates synthesized by click and phosphoramidite chemistries. Bioconjug Chem 21:1520–1529

    Article  PubMed  CAS  Google Scholar 

  13. Eberhard H, Diezmann F, Seitz O (2011) DNA as a molecular ruler: interrogation of a tandem SH2 domain with self-assembled, bivalent DNA-peptide complexes. Angew Chem Int Ed 50:4146–4150

    Article  CAS  Google Scholar 

  14. Gorska K, Beyrath J, Fournel S, Guichard G, Winssinger N (2010) Ligand dimerization programmed by hybridization to study multimeric ligand-receptor interactions. Chem Commun (Camb) 46:7742–7744

    Article  CAS  Google Scholar 

  15. Harris JL, Winssinger N (2005) PNA encoding (PNA = peptide nucleic acid): from solution-based libraries to organized microarrays. Chemistry 11:6792–6801

    Article  PubMed  CAS  Google Scholar 

  16. Debaene F, Da Silva J, Pianowski Z, Duran F, Winssinger N (2007) Expanding the scope of PNA-encoded libraries: divergent synthesis of libraries targeting cysteine, serine and metalloproteases as well as tyrosine phosphatases. Tetrahedron 63:6577–6586

    Article  CAS  Google Scholar 

  17. Urbina HD et al (2006) Self-assembled small-molecule microarrays for protease screening and profiling. Chembiochem 7:1790–1797

    Article  PubMed  CAS  Google Scholar 

  18. Winssinger N et al (2004) PNA-encoded protease substrate microarrays. Chem Biol 11:1351–1360

    Article  PubMed  CAS  Google Scholar 

  19. Daguer JP, Ciobanu M, Alvarez S, Barluenga S, Winssinger N (2011) DNA-templated combinatorial assembly of small molecule fragments amenable to selection/amplification cycles. Chem Sci 2:625–632

    Article  CAS  Google Scholar 

  20. Winssinger N, Pianowski Z, Debaene F (2007) Probing biology with small molecule microarrays (SMM). Top Curr Chem 278:311–342

    Article  CAS  Google Scholar 

  21. Weinrich D, Jonkheijm P, Niemeyer CM, Waldmann H (2009) Applications of protein biochips in biomedical and biotechnological research. Angew Chem Int Ed Engl 48:7744–7751

    Article  PubMed  CAS  Google Scholar 

  22. Fukui S, Feizi T, Galustian C, Lawson AM, Chai W (2002) Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat Biotechnol 20:1011–1017

    Article  PubMed  CAS  Google Scholar 

  23. Paulson JC, Blixt O, Collins BE (2006) Sweet spots in functional glycomics. Nat Chem Biol 2:238–248

    Article  PubMed  CAS  Google Scholar 

  24. Oyelaran O, Gildersleeve JC (2009) Glycan arrays: recent advances and future challenges. Curr Opin Chem Biol 13:406–413

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Wu CY, Liang PH, Wong CH (2009) New development of glycan arrays. Org Biomol Chem 7:2247–2254

    Article  PubMed  CAS  Google Scholar 

  26. Stevens J et al (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312:404–410

    Article  PubMed  CAS  Google Scholar 

  27. Disney MD, Seeberger PH (2004) The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem Biol 11:1701–1707

    Article  PubMed  CAS  Google Scholar 

  28. Huang CY et al (2006) Carbohydrate microarray for profiling the antibodies interacting with Globo H tumor antigen. Proc Natl Acad Sci U S A 103:15–20

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Wang CC et al (2008) Glycan microarray of Globo H and related structures for quantitative analysis of breast cancer. Proc Natl Acad Sci U S A 105:11661–11666

    Article  PubMed Central  PubMed  Google Scholar 

  30. Schroeder H, Ellinger B, Becker CFW, Waldmann H, Niemeyer CM (2007) Generation of live-cell microarrays by means of DNA-directed immobilization of specific cell-surface ligands. Angew Chem Int Ed 46:4180–4183

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the granting agencies which have supported this work (European Research Council (ERC), Frontier Research in Chemistry (FRC), and the French Ministry of Science). The authors thank their collaborators.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Winssinger, N., Gorska, K., Ciobanu, M., Daguer, J.P., Barluenga, S. (2014). Assembly of PNA-Tagged Small Molecules, Peptides, and Carbohydrates onto DNA Templates: Programming the Combinatorial Pairing and Inter-ligand Distance. In: Nielsen, P., Appella, D. (eds) Peptide Nucleic Acids. Methods in Molecular Biology, vol 1050. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-553-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-553-8_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-552-1

  • Online ISBN: 978-1-62703-553-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics