Skip to main content

Sequence Selective Recognition of Double-Stranded RNA Using Triple Helix-Forming Peptide Nucleic Acids

  • Protocol
  • First Online:
Peptide Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1050))

Abstract

Noncoding RNAs are attractive targets for molecular recognition because of the central role they play in gene expression. Since most noncoding RNAs are in a double-helical conformation, recognition of such structures is a formidable problem. Herein, we describe a method for sequence-selective recognition of biologically relevant double-helical RNA (illustrated on ribosomal A-site RNA) using peptide nucleic acids (PNA) that form a triple helix in the major grove of RNA under physiologically relevant conditions. Protocols for PNA preparation and binding studies using isothermal titration calorimetry are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas JR, Hergenrother PJ (2008) Targeting RNA with small molecules. Chem Rev 108:1171–1224

    Article  PubMed  CAS  Google Scholar 

  2. Dervan PB, Edelson BS (2003) Recognition of the DNA minor groove by pyrrole-imidazole polyamides. Curr Opin Struct Biol 13:284–299

    Article  PubMed  CAS  Google Scholar 

  3. Fox KR, Brown T (2005) An extra dimension in nucleic acid sequence recognition. Q Rev Biophys 38:311–320

    Article  PubMed  CAS  Google Scholar 

  4. Maher LJ III, Wold B, Dervan PB (1989) Inhibition of DNA binding proteins by oligonucleotide-directed triple helix formation. Science 245:725–730

    Article  PubMed  CAS  Google Scholar 

  5. Moser HE, Dervan PB (1987) Sequence-specific cleavage of double helical DNA by triple helix formation. Science 238:645–650

    Article  PubMed  CAS  Google Scholar 

  6. Roberts RW, Crothers DM (1992) Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 258:1463–1466

    Article  PubMed  CAS  Google Scholar 

  7. Han H, Dervan PB (1993) Sequence-specific recognition of double helical RNA and RNA-DNA by triple helix formation. Proc Natl Acad Sci U S A 90:3806–3810

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Escude C, Francois JC, Sun JS, Ott G, Sprinzl M, Garestier T, Helene C (1993) Stability of triple helixes containing RNA and DNA strands: experimental and molecular modeling studies. Nucleic Acids Res 21:5547–5553

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Semerad CL, Maher LJ III (1994) Exclusion of RNA strands from a purine motif triple helix. Nucleic Acids Res 22:5321–5325

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Li M, Zengeya T, Rozners E (2010) Short peptide nucleic acids bind strongly to homopurine tract of double helical RNA at pH 5.5. J Am Chem Soc 132:8676–8681

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Gupta P, Zengeya T, Rozners E (2011) Triple helical recognition of pyrimidine inversions in polypurine tracts of RNA by nucleobase-modified PNA. Chem Commun 47:11125–11127

    Article  CAS  Google Scholar 

  12. Gupta P, Muse O, Rozners E (2012) Recognition of double stranded RNA by guanidine-modified peptide nucleic acids (GPNA). Biochemistry 51:63–73

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Gildea B, McLaughlin LW (1989) The synthesis of 2-pyrimidinone nucleosides and their incorporation into oligodeoxynucleotides. Nucleic Acids Res 17:2261–2281

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Buchini S, Leumann CJ (2004) Stable and selective recognition of three base pairs in the parallel triple-helical DNA binding motif. Angew Chem Int Ed 43:3925–3928

    Article  CAS  Google Scholar 

  15. Eldrup AB, Dahl O, Nielsen PE (1997) A novel peptide nucleic acid monomer for recognition of thymine in triple-helix structures. J Am Chem Soc 119:11116–11117

    Article  CAS  Google Scholar 

  16. Hildbrand S, Blaser A, Parel SP, Leumann CJ (1997) 5-substituted 2-aminopyridine C-nucleosides as protonated cytidine equivalents: increasing efficiency and specificity in DNA triple-helix formation. J Am Chem Soc 119:5499–5511

    Article  CAS  Google Scholar 

  17. Cassidy SA, Slickers P, Trent JO, Capaldi DC, Roselt PD, Reese CB, Neidle S, Fox KR (1997) Recognition of GC base pairs by triplex forming oligonucleotides containing nucleosides derived from 2-aminopyridine. Nucleic Acids Res 25:4891–4898

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Zengeya T, Gupta P, Rozners E (2012) Triple helical recognition of RNA using 2-aminopyridine-modified PNA at physiologically relevant conditions. Angew Chem Int Ed 51(50):12593–12596

    Article  CAS  Google Scholar 

  19. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  PubMed  CAS  Google Scholar 

  20. Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365:566–568

    Article  PubMed  CAS  Google Scholar 

  21. Salim NN, Feig AL (2009) Isothermal titration calorimetry of RNA. Methods 47:198–205

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Feig AL (2009) Studying RNA–RNA and RNA–protein interactions by isothermal titration calorimetry. Methods Enzymol 468:409–422

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Puglisi JD, Tinoco I Jr (1989) Absorbance melting curves of RNA. Methods Enzymol 180:304–325

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grant GM071461 and Binghamton University.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Zengeya, T., Gupta, P., Rozners, E. (2014). Sequence Selective Recognition of Double-Stranded RNA Using Triple Helix-Forming Peptide Nucleic Acids. In: Nielsen, P., Appella, D. (eds) Peptide Nucleic Acids. Methods in Molecular Biology, vol 1050. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-553-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-553-8_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-552-1

  • Online ISBN: 978-1-62703-553-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics