Skip to main content

Formation and Characterization of PNA-Containing Heteroquadruplexes

  • Protocol
  • First Online:
Peptide Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1050))

  • 2124 Accesses

Abstract

The guanine quadruplex is a secondary structure formed by DNA and RNA that has been implicated in regulation of gene expression and maintenance of genome stability. Guanine-rich PNA oligomers can invade DNA or RNA quadruplex targets to form heteroquadruplex structures. Affinities in the low nanomolar range are routinely observed, making PNAs among the tightest binding of all quadruplex-targeted agents. Although inherently more promiscuous than heteroduplex formation based on Watson–Crick pairing, selectivity of heteroquadruplex formation can be improved through rational design of the sequence and backbone structure of the PNA. This chapter presents design rules and methods for characterizing PNA–DNA/RNA heteroquadruplexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Nordén B, Nielsen PE (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365:566–568

    Article  PubMed  CAS  Google Scholar 

  2. Gellert M, Lipsett MN, Davies DR (1962) Helix formation by guanylic acid. Proc Natl Acad Sci U S A 48:2013–2018

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Neidle S, Balasubramanian S (eds) (2006) Quadruplex nucleic acids. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  4. Amato J, Oliviero G, De Pauw E, Gabelica V (2009) Hybridization of short complementary PNAs to G-quadruplex forming oligonucleotides: an electrospray mass spectrometry study. Biopolymers 91:244–255

    Article  PubMed  CAS  Google Scholar 

  5. Datta B, Armitage BA (2001) Hybridization of PNA to structured DNA targets: quadruplex invasion and the overhang effect. J Am Chem Soc 123:9612–9619

    Article  PubMed  CAS  Google Scholar 

  6. Green JJ, Ying L, Klenerman D, Balasubramanian S (2003) Kinetics of unfolding the human telomeric DNA quadruplex using a PNA trap. J Am Chem Soc 125:3763–3767

    Article  PubMed  CAS  Google Scholar 

  7. Marin VL, Armitage BA (2005) RNA guanine quadruplex invasion by complementary and homologous PNA probes. J Am Chem Soc 127:8032–8033

    Article  PubMed  CAS  Google Scholar 

  8. Marin VL, Armitage BA (2006) Hybridization of complementary and homologous peptide nucleic acid oligomers to a guanine quadruplex-forming RNA. Biochemistry 45:1745–1754

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Datta B, Schmitt C, Armitage BA (2003) Formation of a PNA2-DNA2 hybrid quadruplex. J Am Chem Soc 125:4111–4118

    Article  PubMed  CAS  Google Scholar 

  10. Roy S, Tanious FA, Wilson WD, Ly DH, Armitage BA (2007) High affinity homologous peptide nucleic acid probes for targeting a quadruplex forming sequence from a MYC promoter element. Biochemistry 46:10433–10443

    Article  PubMed  CAS  Google Scholar 

  11. Lusvarghi S, Murphy CT, Roy S, Tanious FA, Sacui I, Wilson WD, Ly DH, Armitage BA (2009) Loop and backbone modifications of PNA improve G quadruplex binding selectivity. J Am Chem Soc 131:18415–18424

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Roy S, Zanotti KJ, Murphy CT, Tanious FA, Wilson WD, Ly DH, Armitage BA (2011) Kinetic discrimination in recognition of DNA quadruplex targets by guanine-rich heteroquadruplex-forming PNA probes. Chem Commun 47(30):8524–8526. doi:10.1039/C1031CC12805A

    Article  CAS  Google Scholar 

  13. Sun D, Hurley LH (2010) Biochemical techniques for the characterization of G-quadruplex structures: EMSA, DMS footprinting, and DNA polymerase stop assay. Methods Mol Biol 608:65–79

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Kumari S, Bugaut A, Huppert J, Balasubramanian S (2007) An RNA G-quadruplex in the 5' UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol 3:218–221

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A 99:11593–11598

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Hamilton SE, Simmons CG, Kathiriya IS, Corey DR (1999) Cellular delivery of peptide nucleic acids and inhibition of human telomerase. Chem Biol 6:343–351

    Article  PubMed  CAS  Google Scholar 

  17. Koppelus U, Nielsen PE (2003) Cellular delivery of peptide nucleic acid (PNA). Adv Drug Deliv Rev 55:267–280

    Article  Google Scholar 

  18. Sahu B, Chenna V, Lathrop KL, Thomas SM, Zon G, Livak JK, Ly DH (2009) Synthesis of conformationally preorganized and cell-permeable guanidine-based γ-peptide nucleic acids (γGPNAs). J Org Chem 74:1509–1516

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Zhou P, Wang M, Du L, Fisher GW, Waggoner A, Ly DH (2003) Novel binding and efficient cellular uptake of guanidine-based peptide nucleic acids (GPNA). J Am Chem Soc 125:6878–6879

    Article  PubMed  CAS  Google Scholar 

  20. Paul A, Sengupta P, Krishnan Y, Ladame S (2008) Combining G-quadruplex targeting motifs on a single peptide nucleic acid scaffold: a hybrid (3 + 1) PNA-DNA bimolecular quadruplex. Chemistry 14:8682–8689

    Article  PubMed  CAS  Google Scholar 

  21. Christensen L, Fitzpatrick R, Gildea B, Petersen KH, Hansen HF, Koch T, Egholm M, Buchardt O, Nielsen PE, Coull J, Berg RH (1995) Solid-phase synthesis of peptide nucleic acids. J Pept Sci 3:175–183

    Article  Google Scholar 

  22. Koch T (2004) PNA synthesis by Boc chemistry. In: Nielsen PE (ed) Peptide nucleic acids: protocols and applications, 2nd edn. Horizon Bioscience, Norfolk, pp 37–60

    Google Scholar 

  23. Mergny J-L, Phan A-T, Lacroix L (1998) Following G-quartet formation by UV-spectroscopy. FEBS Lett 435:74–78

    Article  PubMed  CAS  Google Scholar 

  24. Marky LA, Breslauer KJ (1987) Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers 26:1601–1620

    Article  PubMed  CAS  Google Scholar 

  25. Job P (1928) Recherches sur la formation de complexes minéraux en solution, et sur leur stabilité. Ann Chim 9:113–203

    CAS  Google Scholar 

  26. Svanvik N, Westman G, Wang D, Kubista M (2000) Light-up probes: thiazole orange-conjugated peptide nucleic acid for detection of target nucleic acid in homogeneous solution. Anal Biochem 281:26–35

    Article  PubMed  CAS  Google Scholar 

  27. Sahu B, Sacui I, Rapireddy S, Zanotti KJ, Bahal R, Armitage BA, Ly DH (2011) Synthesis and characterization of conformationally preorganized, (R)-diethylene glycol-containing γ-peptide nucleic acids with superior hybridization properties and water solubility. J Org Chem. doi:10.1021/jo200482d

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Armitage, B.A. (2014). Formation and Characterization of PNA-Containing Heteroquadruplexes. In: Nielsen, P., Appella, D. (eds) Peptide Nucleic Acids. Methods in Molecular Biology, vol 1050. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-553-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-553-8_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-552-1

  • Online ISBN: 978-1-62703-553-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics