Skip to main content

PNA Openers and Their Applications for Bacterial DNA Diagnostics

  • Protocol
  • First Online:
Peptide Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1050))

Abstract

The unique ability of triplex-forming PNAs to invade the double helix has made it possible to develop a highly specific and sensitive approach for bacterial detection. The method uses short, about 20-bp-long, signature sequences presented as a single copy in the bacterial genome. Bacterial cells are fixed on slides and the PD-loop structure is assembled on the signature site with the help of PNA openers, which includes the circular probe. The sensitivity of the method is achieved via Rolling Circle Amplification (RCA) of the circular probe. The obtained amplicon is detected using short ssDNA decorator probes carrying fluorophores and via standard fluorescent microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mothershed EA, Whitney AM (2006) Nucleic acid-based methods for the detection of bacterial pathogens: present and future considerations for the clinical laboratory. Clin Chim Acta 363:206–220

    Article  PubMed  CAS  Google Scholar 

  2. Procop GW (2002) In situ hybridization for the detection of infectious agents. Clin Microbiol Newsl 24:121–125

    Article  Google Scholar 

  3. Wagner M, Horn M, Daims H (2003) Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Curr Opin Microbiol 6:302–309

    Article  PubMed  CAS  Google Scholar 

  4. Zwirglmaier K (2005) Fluorescence in situ hybridisation – the next generation. FEMS Microbiol Lett 246:151–158

    Article  PubMed  CAS  Google Scholar 

  5. Amann R, Glockner F-O, Neef A (1997) Modern methods in subsurface microbiology: in situ identification of microorganisms with nucleic acid probes. FEMS Microbiol Rev 20:191–200

    Article  CAS  Google Scholar 

  6. Bakermans C, Madsen EL (2002) Detection in coal tar waste-contaminated groundwater of mRNA transcripts related to naphthalene dioxygenase by fluorescent in situ hybridization with tyramide signal amplification. J Microbiol Methods 50:75–84

    Article  PubMed  CAS  Google Scholar 

  7. Pernthaler A, Amann R (2004) Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl Environ Microbiol 70:5426–5433

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Wagner M, Schmid M, Juretschko S et al (1998) In situ detection of a virulence factor mRNA and 16S rRNA in Listeria monocytogenes. FEMS Microbiol Lett 160:159–168

    Article  PubMed  CAS  Google Scholar 

  9. Zwirglmaier K, Ludwig W, Schleifer K-H (2004) Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization: RING-FISH. Mol Microbiol 51:89–96

    Article  PubMed  CAS  Google Scholar 

  10. Smolina I, Kuhn H, Lee C, Frank-Kamenetskii MD (2008) Fluorescence-based detection of short DNA sequences under non-denaturing conditions. Bioorg Med Chem 16:84–93

    Article  PubMed  CAS  Google Scholar 

  11. Smolina I, Lee C, Frank-Kamenetskii MD (2007) Detection of low-copy-number genomic DNA sequences in individual bacterial cells by using peptide nucleic acid-assisted rolling circle amplification and fluorescence in situ hybridization. Appl Environ Microbiol 73:2324–2328

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Smolina IV, Miller NS, Frank-Kamenetskii MD (2010) PNA-based microbial pathogen identification and resistance marker detection: an accurate, isothermal rapid assay based on genome-specific features. Artif DNA PNA XNA 1:1–7

    Article  PubMed Central  PubMed  Google Scholar 

  13. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  PubMed  CAS  Google Scholar 

  14. Uhlmann E, Peyman A, Breipohl G, Will DW (1998) PNA: synthetic polyamide nucleic acids with unusual binding properties. Angew Chem Int Ed 37:2797–2823

    Article  Google Scholar 

  15. Bukanov NO, Demidov VV, Nielsen PE, Frank-Kamenetskii MD (1998) PD-loop: a complex of duplex DNA with an oligonucleotide. Proc Natl Acad Sci U S A 95:5516–5520

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Demidov VV, Frank-Kamenetskii MD (2004) Two sides of the coin: affinity and specificity of nucliec acid interactions. Trends Biochem Sci 29:62–71

    Article  PubMed  CAS  Google Scholar 

  17. Demidov VV, Kuhn H, Lavrentieva-Smolina IV, Frank-Kamenetskii MD (2001) Peptide nucleic acid-assisted topological labelling of duplex DNA. Methods 23:123–131

    Article  PubMed  CAS  Google Scholar 

  18. Kuhn H, Demidov VV, Frank-Kamenetskii MD (2000) An earring for the double helix: assembly of topological links comprising duplex DNA and a circular oligodeoxynucleotide. J Biomol Struct Dyn 11:221–225

    Article  Google Scholar 

  19. Nilsson M (2006) Lock and roll: single-molecule genotyping in situ using padlock probes and rolling-circle amplification. Histochem Cell Biol 126:159–164

    Article  PubMed  CAS  Google Scholar 

  20. Zhang D, Wu J, Ye F et al (2006) Amplification of circularizable probes for the detection of target nucleic acids and proteins. Clin Chim Acta 363:61–70

    Article  PubMed  CAS  Google Scholar 

  21. Egholm M, Christensen L, Dueholm KL et al (1995) Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res 23:217–222

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Smolina, I.V., Frank-Kamenetskii, M.D. (2014). PNA Openers and Their Applications for Bacterial DNA Diagnostics. In: Nielsen, P., Appella, D. (eds) Peptide Nucleic Acids. Methods in Molecular Biology, vol 1050. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-553-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-553-8_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-552-1

  • Online ISBN: 978-1-62703-553-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics