Skip to main content

Therapeutic Applications of Encapsulated Cells

  • Protocol
  • First Online:
Immobilization of Enzymes and Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1051))

Abstract

The synergy of some promising advances in the fields of cell therapy and biomaterials together with improvements in the fabrication of more refined and tailored microcapsules for drug delivery have triggered the progress of cell encapsulation technology. Cell microencapsulation involves immobilizing the transplanted cells within a biocompatible scaffold surrounded by a membrane in attempt to isolate the cells from the host immune attack and enhance or prolong their function in vivo. This technology represents one strategy which aims to overcome the present difficulties related to local and systemic controlled release of drugs and growth factors as well as to organ graft rejection and thus the requirements for use of immunomodulatory protocols or immunosuppressive drugs. This chapter gives an overview of the current situation of cell encapsulation technology as a controlled drug delivery system, and the essential requirements of the technology, some of the therapeutic applications, the challenges, and the future directions under investigation are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balmayor ER, Azevedo HS, Reis RL (2011) Controlled delivery systems: From pharmaceuticals to cells and genes. Pharm Res 28:1241–1258

    Article  PubMed  CAS  Google Scholar 

  2. Nafea EH, Poole-Warren AM, Martens PJ (2011) Immunoisolating semi-permeable membranes for cell encapsulation: Focus on hydrogels. J Control Release 154:110–122

    Article  PubMed  CAS  Google Scholar 

  3. Chang T (1964) Semipermeable microcapsules. Science 146:524–525

    Article  PubMed  CAS  Google Scholar 

  4. Orive G, Hernandez RM, Gascon AR, Calafiore R, Chang TM, De Vos P, Hortelano G, Hunkeler D, Lacik I, Shapiro AM (2003) Cell encapsulation: Promise and progress. Nat Med 9:104–107

    Article  PubMed  CAS  Google Scholar 

  5. Hernandez RM, Orive G, Murua A, Pedraz JL (2010) Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev 62:711–730

    Article  PubMed  CAS  Google Scholar 

  6. McQuilling JP, Arenas-Herrera J, Childers C, Pareta RA, Khanna O, Jiang B, Brey EM, Farney AC, Opara EC (2011) New alginate microcapsule system for angiogenic protein delivery and immunoisolation of islets for transplantation in the rat omentum pouch. Transplant Proc 43:3262–3264

    Article  PubMed  CAS  Google Scholar 

  7. Murua A, Orive G, Hernandez RM, Pedraz JL (2009) Cryopreservation based on freezing protocols for the long-term storage of microencapsulated myoblasts. Biomaterials 30:3495–3501

    Article  PubMed  CAS  Google Scholar 

  8. Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910

    Article  PubMed  CAS  Google Scholar 

  9. Paul A, Cantor A, Shum-Tim D, Prakash S (2011) Superior cell delivery features of genipin crosslinked polymeric microcapsules: Preparation, in vitro characterization and pro-angiogenic applications using human adipose stem cells. Mol Biotechnol 48:116–127

    Article  PubMed  CAS  Google Scholar 

  10. Donati I, Haug IJ, Scarpa T, Borgogna M, Draget KI, Skjak-Braek G, Paoletti S (2007) Synergistic effects in semidilute mixed solutions of alginate and lactose-modified chitosan (chitlac). Biomacromolecules 8:957–962

    Article  PubMed  CAS  Google Scholar 

  11. De Castro M, Orive G, Hernandez RM, Bartkowiak A, Brylak W, Pedraz JL (2009) Biocompatibility and in vivo evaluation of oligochitosans as cationic modifiers of alginate/Ca microcapsules. J Biomed Mater Res A 91:1119–1130

    PubMed  Google Scholar 

  12. Rokstad AM, Brekke OL, Steinkjer B, Ryan L, Kollarikova G, Strand BL, Skjak-Braek G, Lacik I, Espevik T, Mollnes TE (2011) Alginate microbeads are complement compatible, in contrast to polycation containing microcapsules, as revealed in a human whole blood model. Acta Biomater 7:2566–2578

    Article  PubMed  CAS  Google Scholar 

  13. Dandoy P, Meunier CF, Michiels C, Su BL (2011) Hybrid shell engineering of animal cells for immune protections and regulation of drug delivery: Towards the design of “artificial organs”. PLoS One 6:e20983

    Article  PubMed  CAS  Google Scholar 

  14. Moskalenko V, Ulrichs K, Kerscher A, Blind E, Otto C, Hamelmann W, Demidchik Y, Timm S (2007) Preoperative evaluation of microencapsulated human parathyroid tissue aids selection of the optimal bioartificial graft for human parathyroid allotransplantation. Transpl Int 20:688–696

    Article  PubMed  CAS  Google Scholar 

  15. Wen J, Xu N, Li A, Bourgeois J, Ofosu FA, Hortelano G (2007) Encapsulated human primary myoblasts deliver functional hFIX in hemophilic mice. J Gene Med 9:1002–1010

    Article  PubMed  CAS  Google Scholar 

  16. Murua A, Orive G, Hernandez RM, Pedraz JL (2009) Xenogeneic transplantation of erythropoietin-secreting cells immobilized in microcapsules using transient immunosuppression. J Control Release 137:174–178

    Article  PubMed  CAS  Google Scholar 

  17. Mei J, Sgroi A, Mai G, Baertschiger R, Gonelle-Gispert C, Serre-Beinier V, Morel P, Buhler LH (2009) Improved survival of fulminant liver failure by transplantation of microencapsulated cryopreserved porcine hepatocytes in mice. Cell Transplant 18:101–110

    Article  PubMed  Google Scholar 

  18. Zanin MP, Pettingill LN, Harvey AR, Emerich DF, Thanos CG, Shepherd RK (2012) The development of encapsulated cell technologies as therapies for neurological and sensory diseases. J Control Release 160:3–13

    Article  PubMed  CAS  Google Scholar 

  19. Vaithilingam V, Tuch BE (2011) Islet transplantation and encapsulation: An update on recent developments. Rev Diabet Stud 8:51–67

    Article  PubMed  Google Scholar 

  20. Salmons B, Brandtner EM, Hettrich K, Wagenknecht W, Volkert B, Fischer S, Dangerfield JA, Gunzburg WH (2010) Encapsulated cells to focus the metabolic activation of anticancer drugs. Curr Opin Mol Ther 12:450–460

    PubMed  CAS  Google Scholar 

  21. Paul A, Ge Y, Prakash S, Shum-Tim D (2009) Microencapsulated stem cells for tissue repairing: Implications in cell-based myocardial therapy. Regen Med 4:733–745

    Article  PubMed  Google Scholar 

  22. Lee KY, Mooney DJ (2012) Alginate: Properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  PubMed  CAS  Google Scholar 

  23. Ye Z, Mahato RI (2008) Emerging trends in cell-based therapies. preface. Adv Drug Deliv Rev 60:89–90

    Article  PubMed  CAS  Google Scholar 

  24. Ananta M, Brown RA, Mudera V (2012) A rapid fabricated living dermal equivalent for skin tissue engineering: An in vivo evaluation in an acute wound model. Tissue Eng Part A 18:353–361

    Article  PubMed  CAS  Google Scholar 

  25. Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23:H41–56

    Article  PubMed  CAS  Google Scholar 

  26. Stiegler P, Matzi V, Pierer E, Hauser O, Schaffellner S, Renner H, Greilberger J, Aigner R, Maier A, Lackner C (2010) Creation of a prevascularized site for cell transplantation in rats. Xenotransplantation 17:379–390

    Article  PubMed  Google Scholar 

  27. Sakai S, Hashimoto I, Tanaka S, Salmons B, Kawakami K (2009) Small agarose microcapsules with cell-enclosing hollow core for cell therapy: Transplantation of ifosfamide-activating cells to the mice with preestablished subcutaneous tumor. Cell Transplant 18:933–939

    Article  PubMed  Google Scholar 

  28. Sakai S, Ito S, Kawakami K (2010) Calcium alginate microcapsules with spherical liquid cores templated by gelatin microparticles for mass production of multicellular spheroids. Acta Biomater 6:3132–3137

    Article  PubMed  CAS  Google Scholar 

  29. Sakai S, Kawakami K (2008) Both ionically and enzymatically crosslinkable alginate-tyramine conjugate as materials for cell encapsulation. J Biomed Mater Res A 85:345–351

    PubMed  Google Scholar 

  30. Santos E, Zarate J, Orive G, Hernández RM, Pedráz JL (2010) Biomaterials in cell microencapsulation. Adv Exp Med Biol 670:5–21

    Article  PubMed  CAS  Google Scholar 

  31. Heiligenstein S, Cucchiarini M, Laschke MW, Bohle RM, Kohn D, Menger MD, Madry H (2011) Evaluation of nonbiomedical and biomedical grade alginates for the transplantation of genetically modified articular chondrocytes to cartilage defects in a large animal model in vivo. J Gene Med 13:230–242

    Article  PubMed  CAS  Google Scholar 

  32. Chan G, Mooney DJ (2008) New materials for tissue engineering: Towards greater control over the biological response. Trends Biotechnol 26:382–392

    Article  PubMed  CAS  Google Scholar 

  33. Vacharathit V, Silva EA, Mooney DJ (2011) Viability and functionality of cells delivered from peptide conjugated scaffolds. Biomaterials 32:3721–3728

    Article  PubMed  CAS  Google Scholar 

  34. Comisar WA, Mooney DJ, Linderman JJ (2011) Integrin organization: Linking adhesion ligand nanopatterns with altered cell responses. J Theor Biol 274:120–130

    Article  PubMed  CAS  Google Scholar 

  35. Orive G, De Castro M, Kong HJ, Hernandez RM, Ponce S, Mooney DJ, Pedraz JL (2009) Bioactive cell-hydrogel microcapsules for cell-based drug delivery. J Control Release 135:203–210

    Article  PubMed  CAS  Google Scholar 

  36. Brun-Graeppi AK, Richard C, Bessodes M, Scherman D, Merten OW (2011) Cell microcarriers and microcapsules of stimuli-responsive polymers. J Control Release 149:209–224

    Article  PubMed  CAS  Google Scholar 

  37. Leung A, Nielsen LK, Trau M, Timmins NE (2010) Tissue transplantation by stealth—Coherent alginate microcapsules for immunoisolation. Biochem Eng J 48:337–347

    Article  CAS  Google Scholar 

  38. de Vos P, Bucko M, Gemeiner P, Navratil M, Svitel J, Faas M, Strand BL, Skjak-Braek G, Morch YA, Vikartovska A (2009) Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials 30:2559–2570

    Article  PubMed  CAS  Google Scholar 

  39. Schmidt JJ, Rowley J, Kong HJ (2008) Hydrogels used for cell-based drug delivery. J Biomed Mater Res A 87:1113–1122

    PubMed  Google Scholar 

  40. Santos E, Orive G, Calvo A, Catena R, Fernandez-Robredo P, Layana AG, Hernandez RM, Pedraz JL (2012) Optimization of 100μm alginate-poly-l-lysine-alginate capsules for intravitreous administration. J Control Release 158:443–450

    Article  PubMed  CAS  Google Scholar 

  41. Orive G, Tam SK, Pedraz JL, Halle JP (2006) Biocompatibility of alginate-poly-l-lysine microcapsules for cell therapy. Biomaterials 27:3691–3700

    Article  PubMed  CAS  Google Scholar 

  42. de Haan BJ, Rossi A, Faas MM, Smelt MJ, Sonvico F, Colombo P, de Vos P (2011) Structural surface changes and inflammatory responses against alginate-based microcapsules after exposure to human peritoneal fluid. J Biomed Mater Res A 98:394–403

    PubMed  Google Scholar 

  43. Goren A, Dahan N, Goren E, Baruch L, Machluf M (2010) Encapsulated human mesenchymal stem cells: A unique hypoimmunogenic platform for long-term cellular therapy. FASEB J 24:22–31

    Article  PubMed  CAS  Google Scholar 

  44. Houtgraaf JH, Dejong R, Monkhorst K, Tempel D, Dendekker W, Kazemil K, Hoefer I, Pasterkamp G, Lewis AL, Stratford PW (2013) Feasibility of intracoronary GLP-1 eluting Cell Bead infusion in acute myocardial infarction. Cell Transplant 22:535–543

    Google Scholar 

  45. Barnett BP, Arepally A, Stuber M, Arifin DR, Kraitchman DL, Bulte JW (2011) Synthesis of magnetic resonance-, X-ray- and ultrasound-visible alginate microcapsules for immunoisolation and noninvasive imaging of cellular therapeutics. Nat Protoc 6:1142–1151

    Article  PubMed  CAS  Google Scholar 

  46. Link TW, Woodrum D, Gilson WD, Pan L, Qian D, Kraitchman DL, Bulte JW, Arepally A, Weiss CR (2011) MR-guided portal vein delivery and monitoring of magnetocapsules: Assessment of physiologic effects on the liver. J Vasc Interv Radiol 22:1335–1340

    Article  PubMed  Google Scholar 

  47. Catena R, Santos E, Orive G, Hernandez RM, Pedraz JL, Calvo A (2010) Improvement of the monitoring and biosafety of encapsulated cells using the SFGNESTGL triple reporter system. J Control Release 146:93–98

    Article  PubMed  CAS  Google Scholar 

  48. Soon-Shiong P, Heintz RE, Merideth N, Yao QX, Yao Z, Zheng T, Murphy M, Moloney MK, Schmehl M, Harris M (1994) Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343:950–951

    Article  PubMed  CAS  Google Scholar 

  49. Calafiore R, Basta G, Luca G, Lemmi A, Montanucci MP, Calabrese G, Racanicchi L, Mancuso F, Brunetti P (2006) Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: First two cases. Diabetes Care 29:137–138

    Article  PubMed  Google Scholar 

  50. Calafiore R, Basta G, Luca G, Lemmi A, Racanicchi L, Mancuso F, Montanucci MP, Brunetti P (2006) Standard technical procedures for microencapsulation of human islets for graft into nonimmunosuppressed patients with type 1 diabetes mellitus. Transplant Proc 38:1156–1157

    Article  PubMed  CAS  Google Scholar 

  51. Elliott RB, Escobar L, Tan PL, Muzina M, Zwain S, Buchanan C (2007) Live encapsulated porcine islets from a type 1 diabetic patient 9.5 year after xenotransplantation. Xenotransplantation 14:157–161

    Article  PubMed  Google Scholar 

  52. Wynyard S, Garkavenko O, Elliot R (2011) Multiplex high resolution melting assay for estimation of porcine endogenous retrovirus (PERV) relative gene dosage in pigs and detection of PERV infection in xenograft recipients. J Virol Methods 175:95–100

    Article  PubMed  CAS  Google Scholar 

  53. Tuch BE, Keogh GW, Williams LJ, Wu W, Foster JL, Vaithilingam V, Philips R (2009) Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care 32:1887–1889

    Article  PubMed  CAS  Google Scholar 

  54. US National Institutes of Health. ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2012 July]

    Google Scholar 

  55. Stover NP, Watts RL (2008) Spheramine for treatment of parkinson’s disease. Neurotherapeutics 5:252–259

    Article  PubMed  CAS  Google Scholar 

  56. Bloch J, Bachoud-Levi AC, Deglon N, Lefaucheur JP, Winkel L, Palfi S, Nguyen JP, Bourdet C, Gaura V, Remy P (2004) Neuroprotective gene therapy for huntington’s disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: Results of a phase I study. Hum Gene Ther 15:968–975

    Article  PubMed  CAS  Google Scholar 

  57. Lohr M, Hoffmeyer A, Kroger J, Freund M, Hain J, Holle A, Karle P, Knofel WT, Liebe S, Muller P (2001) Microencapsulated cell-mediated treatment of inoperable pancreatic carcinoma. Lancet 357:1591–1592

    Article  PubMed  CAS  Google Scholar 

  58. Salmons B, Lohr M, Gunzburg WH (2003) Treatment of inoperable pancreatic carcinoma using a cell-based local chemotherapy: Results of a phase I/II clinical trial. J Gastroenterol 38(Suppl 15):78–84

    PubMed  CAS  Google Scholar 

  59. Hasse C, Klock G, Schlosser A, Zimmermann U, Rothmund M (1997) Parathyroid allotransplantation without immunosuppression. Lancet 350:1296–1297

    Article  PubMed  CAS  Google Scholar 

  60. Aebischer P, Schluep M, Deglon N, Joseph JM, Hirt L, Heyd B, Goddard M, Hammang JP, Zurn AD, Kato AC (1996) Intrathecal delivery of CNTF using encapsulated genetically modified xenogeneic cells in amyotrophic lateral sclerosis patients. Nat Med 2:696–699

    Article  PubMed  CAS  Google Scholar 

  61. Sieving PA, Caruso RC, Tao W, Coleman HR, Thompson DJ, Fullmer KR, Bush RA (2006) Ciliary neurotrophic factor (CNTF) for human retinal degeneration: Phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci USA 103:3896–3901

    Article  PubMed  CAS  Google Scholar 

  62. Talcott KE, Ratnam K, Sundquist SM, Lucero AS, Lujan BJ, Tao W, Porco TC, Roorda A, Duncan JL (2011) Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Invest Ophthalmol Vis Sci 52:2219–2226

    Article  PubMed  CAS  Google Scholar 

  63. Shapiro AM (2011) Strategies toward single-donor islets of langerhans transplantation. Curr Opin Organ Transplant 16:627–631

    Article  PubMed  CAS  Google Scholar 

  64. Luca G, Fallarino F, Calvitti M, Mancuso F, Nastruzzi C, Arato I, Falabella G, Grohmann U, Becchetti E, Puccetti P (2010) Xenograft of microencapsulated sertoli cells reverses T1DM in NOD mice by inducing neogenesis of beta-cells. Transplantation 90:1352–1357

    Article  PubMed  Google Scholar 

  65. Opara EC, Mirmalek-Sani SH, Khanna O, Moya ML, Brey EM (2010) Design of a bioartificial pancreas(+). J Investig Med 58:831–837

    PubMed  Google Scholar 

  66. Godfrey KJ, Mathew B, Bulman JC, Shah O, Clement S, Gallicano GI (2012) Stem cell-based treatments for type 1 diabetes mellitus: Bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells. Diabet Med 29:14–23

    Article  PubMed  CAS  Google Scholar 

  67. Ngoc PK, Phuc PV, Nhung TH, Thuy DT, Nguyet NT (2011) Improving the efficacy of type 1 diabetes therapy by transplantation of immunoisolated insulin-producing cells. Hum Cell 24:86–95

    Article  PubMed  Google Scholar 

  68. Wang N, Adams G, Buttery L, Falcone FH, Stolnik S (2009) Alginate encapsulation technology supports embryonic stem cells differentiation into insulin-producing cells. J Biotechnol 144:304–312

    Article  PubMed  CAS  Google Scholar 

  69. Tuch BE, Hughes TC, Evans MD (2011) Encapsulated pancreatic progenitors derived from human embryonic stem cells as a therapy for insulin-dependent diabetes. Diabetes Metab Res Rev 27:928–932

    Article  PubMed  CAS  Google Scholar 

  70. Montanucci P, Pennoni I, Pescara T, Blasi P, Bistoni G, Basta G, Calafiore R (2011) The functional performance of microencapsulated human pancreatic islet-derived precursor cells. Biomaterials 32:9254–9262

    Article  PubMed  CAS  Google Scholar 

  71. Shao S, Gao Y, Xie B, Xie F, Lim SK, Li G (2011) Correction of hyperglycemia in type 1 diabetic models by transplantation of encapsulated insulin-producing cells derived from mouse embryo progenitor. J Endocrinol 208:245–255

    PubMed  CAS  Google Scholar 

  72. Murua A, Orive G, Hernandez RM, Pedraz JL (2011) Emerging technologies in the delivery of erythropoietin for therapeutics. Med Res Rev 31:284–309

    Article  PubMed  CAS  Google Scholar 

  73. Orive G, De Castro M, Ponce S, Hernandez RM, Gascon AR, Bosch M, Alberch J, Pedraz JL (2005) Long-term expression of erythropoietin from myoblasts immobilized in biocompatible and neovascularized microcapsules. Mol Ther 12:283–289

    Article  PubMed  CAS  Google Scholar 

  74. Murua A, de Castro M, Orive G, Hernandez RM, Pedraz JL (2007) In vitro characterization and in vivo functionality of erythropoietin-secreting cells immobilized in alginate-poly-l-lysine-alginate microcapsules. Biomacro-molecules 8:3302–3307

    Article  CAS  Google Scholar 

  75. Ponce S, Orive G, Hernandez RM, Gascon AR, Canals JM, Munoz MT, Pedraz JL (2006) In vivo evaluation of EPO-secreting cells immobilized in different alginate-PLL microcapsules. J Control Release 116:28–34

    Article  PubMed  CAS  Google Scholar 

  76. Murua A, Herran E, Orive G, Igartua M, Blanco FJ, Pedraz JL, Hernandez RM (2011) Design of a composite drug delivery system to prolong functionality of cell-based scaffolds. Int J Pharm 407:142–150

    Article  PubMed  CAS  Google Scholar 

  77. Sajadi A, Bensadoun JC, Schneider BL, Lo Bianco C, Aebischer P (2006) Transient striatal delivery of GDNF via encapsulated cells leads to sustained behavioral improvement in a bilateral model of parkinson disease. Neurobiol Dis 22:119–129

    Article  PubMed  CAS  Google Scholar 

  78. Grandoso L, Ponce S, Manuel I, Arrue A, Ruiz-Ortega JA, Ulibarri I, Orive G, Hernandez RM, Rodriguez A, Rodriguez-Puertas R (2007) Long-term survival of encapsulated GDNF secreting cells implanted within the striatum of parkinsonized rats. Int J Pharm 343:69–78

    Article  PubMed  CAS  Google Scholar 

  79. Kishima H, Poyot T, Bloch J, Dauguet J, Conde F, Dolle F, Hinnen F, Pralong W, Palfi S, Deglon N (2004) Encapsulated GDNF-producing C2C12 cells for parkinson’s disease: A pre-clinical study in chronic MPTP-treated baboons. Neurobiol Dis 16:428–439

    Article  PubMed  CAS  Google Scholar 

  80. Yasuhara T, Shingo T, Kobayashi K, Takeuchi A, Yano A, Muraoka K, Matsui T, Miyoshi Y, Hamada H, Date I (2004) Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of parkinson’s disease. Eur J Neurosci 19:1494–1504

    Article  PubMed  Google Scholar 

  81. Yasuhara T, Shingo T, Muraoka K, wen Ji Y, Kameda M, Takeuchi A, Yano A, Nishio S, Matsui T, Miyoshi Y (2005) The differences between high and low-dose administration of VEGF to dopaminergic neurons of in vitro and in vivo parkinson’s disease model. Brain Res 1038:1–10

    Article  PubMed  CAS  Google Scholar 

  82. Skinner SJ, Geaney MS, Lin H, Muzina M, Anal AK, Elliott RB, Tan PL (2009) Encapsulated living choroid plexus cells: Potential long-term treatments for central nervous system disease and trauma. J Neural Eng 6:065001

    Article  PubMed  CAS  Google Scholar 

  83. Ahn YH, Bensadoun JC, Aebischer P, Zurn AD, Seiger A, Bjorklund A, Lindvall O, Wahlberg L, Brundin P, Kaminski Schierle GS (2005) Increased fiber outgrowth from xeno-transplanted human embryonic dopaminergic neurons with co-implants of polymer-encapsulated genetically modified cells releasing glial cell line-derived neurotrophic factor. Brain Res Bull 66:135–142

    Article  PubMed  CAS  Google Scholar 

  84. Shanbhag MS, Lathia JD, Mughal MR, Francis NL, Pashos N, Mattson MP, Wheatley MA (2010) Neural progenitor cells grown on hydrogel surfaces respond to the product of the transgene of encapsulated genetically engineered fibroblasts. Biomacromolecules 11:2936–2943

    Article  CAS  Google Scholar 

  85. Spuch C, Antequera D, Portero A, Orive G, Hernandez RM, Molina JA, Bermejo-Pareja F, Pedraz JL, Carro E (2010) The effect of encapsulated VEGF-secreting cells on brain amyloid load and behavioral impairment in a mouse model of alzheimer’s disease. Biomaterials 31:5608–5618

    Article  PubMed  CAS  Google Scholar 

  86. Garcia P, Youssef I, Utvik JK, Florent-Bechard S, Barthelemy V, Malaplate-Armand C, Kriem B, Stenger C, Koziel V, Olivier JL (2010) Ciliary neurotrophic factor cell-based delivery prevents synaptic impairment and improves memory in mouse models of alzheimer’s disease. J Neurosci 30:7516–7527

    Article  PubMed  CAS  Google Scholar 

  87. Klinge PM, Harmening K, Miller MC, Heile A, Wallrapp C, Geigle P, Brinker T (2011) Encapsulated native and glucagon-like peptide-1 transfected human mesenchymal stem cells in a transgenic mouse model of alzheimer’s disease. Neurosci Lett 497:6–10

    Article  PubMed  CAS  Google Scholar 

  88. Antequera D, Portero A, Bolos M, Orive G, Hernandez RM, Pedraz JL, Carro E (2012) Encapsulated VEGF-secreting cells enhance proliferation of neuronal progenitors in the hippocampus of AbetaPP/Ps1 mice. J Alzheimers Dis 29:187–200

    PubMed  CAS  Google Scholar 

  89. Emerich DF, Skinner SJ, Borlongan CV, Vasconcellos AV, Thanos CG (2005) The choroid plexus in the rise, fall and repair of the brain. Bioessays 27:262–274

    Article  PubMed  CAS  Google Scholar 

  90. Borlongan CV, Skinner SJ, Geaney M, Vasconcellos AV, Elliott RB, Emerich DF (2004) Neuroprotection by encapsulated choroid plexus in a rodent model of huntington’s disease. Neuroreport 15:2521–2525

    Article  PubMed  Google Scholar 

  91. Borlongan CV, Thanos CG, Skinner SJ, Geaney M, Emerich DF (2008) Transplants of encapsulated rat choroid plexus cells exert neuroprotection in a rodent model of huntington’s disease. Cell Transplant 16:987–992

    Article  PubMed  Google Scholar 

  92. Emerich DF, Schneider P, Bintz B, Hudak J, Thanos CG (2007) Aging reduces the neuroprotective capacity, VEGF secretion, and metabolic activity of rat choroid plexus epithelial cells. Cell Transplant 16:697–705

    PubMed  Google Scholar 

  93. Emerich DF, Thanos CG, Goddard M, Skinner SJ, Geany MS, Bell WJ, Bintz B, Schneider P, Chu Y, Babu RS (2006) Extensive neuroprotection by choroid plexus transplants in excitotoxin lesioned monkeys. Neurobiol Dis 23:471–480

    Article  PubMed  Google Scholar 

  94. Wang F, Guan J (2010) Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy. Adv Drug Deliv Rev 62:784–797

    Article  PubMed  CAS  Google Scholar 

  95. Malliaras K, Kreke M, Marban E (2011) The stuttering progress of cell therapy for heart disease. Clin Pharmacol Ther 90:532–541

    Article  PubMed  CAS  Google Scholar 

  96. Yasuda T, Weisel RD, Kiani C, Mickle DA, Maganti M, Li RK (2005) Quantitative analysis of survival of transplanted smooth muscle cells with real-time polymerase chain reaction. J Thorac Cardiovasc Surg 129:904–911

    Article  PubMed  Google Scholar 

  97. Teng CJ, Luo J, Chiu RC, Shum-Tim D (2006) Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: Implications for cellular cardiomyoplasty. J Thorac Cardiovasc Surg 132:628–632

    Article  PubMed  Google Scholar 

  98. Mazo M, Gavira JJ, Pelacho B, Prosper F (2011) Adipose-derived stem cells for myocardial infarction. J Cardiovasc Transl Res 4:145–153

    Article  PubMed  Google Scholar 

  99. Al Kindi AH, Asenjo JF, Ge Y, Chen GY, Bhathena J, Chiu RC, Prakash S, Shum-Tim D (2010) Microencapsulation to reduce mechanical loss of microspheres: Implications in myocardial cell therapy. Eur J Cardiothorac Surg 39:241–247

    Article  PubMed  Google Scholar 

  100. Yu J, Du KT, Fang Q, Gu Y, Mihardja SS, Sievers RE, Wu JC, Lee RJ (2010) The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials 31:7012–7020

    Article  PubMed  CAS  Google Scholar 

  101. Zhang H, Zhu SJ, Wang W, Wei YJ, Hu SS (2008) Transplantation of microencapsulated genetically modified xenogeneic cells augments angiogenesis and improves heart function. Gene Ther 15:40–48

    Article  PubMed  CAS  Google Scholar 

  102. Teng H, Zhang Y, Wang W, Ma X, Fei J (2007) Inhibition of tumor growth in mice by endostatin derived from abdominal transplanted encapsulated cells. Acta Biochim Biophys Sin (Shanghai) 39:278–284

    Article  CAS  Google Scholar 

  103. Zhang Y, Wang W, Xie Y, Yu W, Teng H, Liu X, Zhang X, Guo X, Fei J, Ma X (2007) In vivo culture of encapsulated endostatin-secreting chinese hamster ovary cells for systemic tumor inhibition. Hum Gene Ther 18:474–481

    Article  PubMed  CAS  Google Scholar 

  104. Schuch G, Oliveira-Ferrer L, Loges S, Laack E, Bokemeyer C, Hossfeld DK, Fiedler W, Ergun S (2005) Antiangiogenic treatment with endostatin inhibits progression of AML in vivo. Leukemia 19:1312–1317

    Article  PubMed  CAS  Google Scholar 

  105. Cirone P, Bourgeois JM, Chang PL (2003) Antiangiogenic cancer therapy with microencapsulated cells. Hum Gene Ther 14:1065–1077

    Article  PubMed  CAS  Google Scholar 

  106. Li AA, Shen F, Zhang T, Cirone P, Potter M, Chang PL (2006) Enhancement of myoblast microencapsulation for gene therapy. J Biomed Mater Res B Appl Biomater 77:296–306

    PubMed  Google Scholar 

  107. Bartsch G Jr, Eggert K, Soker S, Bokemeyer C, Hautmann R, Schuch G (2008) Combined antiangiogenic therapy is superior to single inhibitors in a model of renal cell carcinoma. J Urol 179:326–332

    Article  PubMed  CAS  Google Scholar 

  108. Hao S, Su L, Guo X, Moyana T, Xiang J (2005) A novel approach to tumor suppression using microencapsulated engineered J558/TNF-alpha cells. Exp Oncol 27:56–60

    PubMed  CAS  Google Scholar 

  109. Moran DM, Koniaris LG, Jablonski EM, Cahill PA, Halberstadt CR, McKillop IH (2006) Microencapsulation of engineered cells to deliver sustained high circulating levels of interleukin-6 to study hepatocellular carcinoma progression. Cell Transplant 15:785–798

    Article  PubMed  Google Scholar 

  110. Cirone P, Shen F, Chang PL (2005) A multiprong approach to cancer gene therapy by coencapsulated cells. Cancer Gene Ther 12:369–380

    Article  PubMed  CAS  Google Scholar 

  111. Shi M, Hao S, Quereshi M, Guo X, Zheng C, Xiang J (2005) Significant tumor regression induced by microencapsulation of recombinant tumor cells secreting fusion protein. Cancer Biother Radiopharm 20:260–266

    Article  PubMed  CAS  Google Scholar 

  112. Kuijlen JM, de Haan BJ, Helfrich W, de Boer JF, Samplonius D, Mooij JJ, de Vos P (2006) The efficacy of alginate encapsulated CHO-K1 single chain-TRAIL producer cells in the treatment of brain tumors. J Neurooncol 78:31–39

    Article  PubMed  CAS  Google Scholar 

  113. Dubrot J, Portero A, Orive G, Hernandez RM, Palazon A, Rouzaut A, Perez-Gracia JL, Hervas-Stubbs S, Pedraz JL, Melero I (2010) Delivery of immunostimulatory monoclonal antibodies by encapsulated hybridoma cells. Cancer Immunol Immunother 59:1621–1631

    Article  PubMed  CAS  Google Scholar 

  114. Dvir-Ginzberg M, Konson A, Cohen S, Agbaria R (2007) Entrapment of retroviral vector producer cells in three-dimensional alginate scaffolds for potential use in cancer gene therapy. J Biomed Mater Res B Appl Biomater 80:59–66

    PubMed  Google Scholar 

  115. Kleinschmidt K, Klinge PM, Stopa E, Wallrapp C, Glage S, Geigle P, Brinker T (2011) Alginate encapsulated human mesenchymal stem cells suppress syngeneic glioma growth in the immunocompetent rat. J Microencapsul 28:621–627

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Acarregui, A., Orive, G., Pedraz, J.L., Hernández, R.M. (2013). Therapeutic Applications of Encapsulated Cells. In: Guisan, J. (eds) Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 1051. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-550-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-550-7_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-549-1

  • Online ISBN: 978-1-62703-550-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics