Skip to main content

Biomedical Applications of Immobilized Enzymes: An Update

  • Protocol
  • First Online:
Immobilization of Enzymes and Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1051))

Abstract

Immobilized enzymes have been widely studied during the last few decades. Biocatalyst systems may work as biosensors or may be used for the treatment of different diseases. This chapter presents different attempts to immobilize enzymes in the biomedical field, particularly the use of prolidase and superoxide dismutase as two examples of this approach. Although this chapter focuses on liposomes and nanoparticles for the entrapment of these enzymes, the methods detailed here could be adapted for the immobilization of other enzymes with therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laurent N, Haddoub R, Flitsch SL (2008) Enzyme catalysis on solid surfaces. Trends Biotechnol 26:328–337

    Article  PubMed  CAS  Google Scholar 

  2. Betancor L, Luckarift HR (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol 26:566–572

    Article  PubMed  CAS  Google Scholar 

  3. Park Y, Liang J, Song H, Li YT, Naik S, Yang VC (2003) ATTEMPTS: a heparin/protamine-based triggered release system for the delivery of enzyme drugs without associated side-effects. Adv Drug Deliv Rev 55:251–265

    Article  PubMed  CAS  Google Scholar 

  4. Brady D, Jordaan J (2009) Advances in enzyme immobilisation. Biotechnol Lett 31:1639–1650

    Article  PubMed  CAS  Google Scholar 

  5. Cao L, Langen LV, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14:387–394

    Article  PubMed  CAS  Google Scholar 

  6. Kotanen CN, Moussy FG, Carrara S, Guiseppi-Elie A (2012) Implantable enzyme amperometric biosensors. Biosens Bioelectron 35:14–26

    Article  PubMed  CAS  Google Scholar 

  7. Liu P, Santisteban I, Burroughs LM, Ochs HD, Torgerson TR, Hershfield MS et al (2009) Immunologic reconstitution during PEG-ADA therapy in an unusual mosaic ada deficient patient. Clin Immunol 130:162–174

    Article  PubMed  CAS  Google Scholar 

  8. Lizano C, Pérez MT, Pinilla M (2001) Mouse erythrocytes as carriers for coencapsulated alcohol and aldehyde dehydrogenase obtained by electroporation: in vivo survival rate in circulation, organ distribution and ethanol degradation. Life Sci 68:2001–2016

    Article  PubMed  CAS  Google Scholar 

  9. Lizano C, Sanz S, Luque J, Pinilla M (1998) In vitro study of alcohol dehydrogenase and acetaldehyde dehydrogenase encapsulated into human erythrocytes by an electroporation procedure. Biochim Biophys Acta 1425:328–336

    Article  PubMed  CAS  Google Scholar 

  10. Holtsberg FW, Ensor CM, Steiner MR, Bomalaski JS, Clark MA (2002) Poly(ethylene glycol) (PEG) conjugated arginine deiminase: effects of peg formulations on its pharmacological properties. J Control Release 80:259–271

    Article  PubMed  CAS  Google Scholar 

  11. Glazer ES, Piccirillo M, Albino V, Di Giacomo R, Palaia R, Mastro AA et al (2010) Phase II study of pegylated arginine deiminase for nonresectable and metastatic hepatocellular carcinoma. J Clin Oncol 28:2220–2226

    Article  PubMed  CAS  Google Scholar 

  12. Löhr M, Hummel F, Faulmann G, Ringel J, Saller R, Hain J et al (2002) Microencapsulated, CYP2B1-transfected cells activating ifosfamide at the site of the tumor: the magic bullets of the 21st century. Cancer Chemother Pharmacol 49:21–24

    Article  Google Scholar 

  13. Osman R, Kan PL, Awad G, Mortada N, El-Shamy A, Alpar O (2011) Enhanced properties of discrete pulmonary deoxyribonuclease I (DNaseI) loaded PLGA nanoparticles during encapsulation and activity determination. Int J Pharm 408:257–265

    Article  PubMed  CAS  Google Scholar 

  14. Cheng M, Wang J, Li Y, Liu X, Zhang X, Chen D et al (2008) Characterization of water-in-oil microemulsion for oral delivery of earthworm fibrinolytic enzyme. J Control Release 129:41–48

    Article  PubMed  CAS  Google Scholar 

  15. Hill KJ, Kaszuba M, Creeth JE, Jones MN (1997) Reactive liposomes encapsulating a glucose oxidase-peroxidase system with antibacterial activity. Biochim Biophys Acta 1326:37–46

    Article  PubMed  CAS  Google Scholar 

  16. Ghosh S, Chaganti SR, Prakasham RS (2012) Polyaniline nanofiber as a novel immobilization matrix for the anti-leukemia enzyme l-asparaginase. J Mol Catal B: Enzym 74:132–137

    Article  CAS  Google Scholar 

  17. Kwon YM, Chung HS, Moon C, Yockman J, Park YJ, Gitlin SD et al (2009) L-asparaginase encapsulated intact erythrocytes for treatment of acute lymphoblastic leukemia (ALL). J Control Release 139:182–189

    Article  PubMed  CAS  Google Scholar 

  18. Kapoor M, Rajagopal R (2011) Enzymatic bioremediation of organophosphorus insecticides by recombinant organophosphorous hydrolase. Int Biodeterior Biodegradation 65:896–901

    Article  CAS  Google Scholar 

  19. Patchell CJ, Desai M, Weller PH, MacDonald A, Smyth RL, Bush A et al (2002) Creon® 10,000 Minimicrospheres™ vs. Creon® 8000 microspheres—an open randomised crossover preference study. J Cyst Fibros 1:287–291

    Article  PubMed  CAS  Google Scholar 

  20. Santini B, Antonelli M, Battistini A, Bertasi S, Collura M, Esposito I et al (2000) Comparison of two enteric coated microsphere preparations in the treatment of pancreatic exocrine insufficiency caused by cystic fibrosis. Dig Liver Dis 32:406–411

    Article  PubMed  CAS  Google Scholar 

  21. Shah RM, D’mello AP (2008) Strategies to maximize the encapsulation efficiency of phenylalanine ammonia lyase in microcapsules. Int J Pharm 356:61–68

    Article  PubMed  CAS  Google Scholar 

  22. Genta I, Perugini P, Pavanetto F, Maculotti K, Modena T, Casado B et al (2001) Enzyme loaded biodegradable microspheres in vitro: ex vivo evaluation. J Control Release 77:287–295

    Article  PubMed  CAS  Google Scholar 

  23. Liang JF, Li YT, Yang VC (2000) A novel approach for delivery of enzyme drugs: preliminary demonstration of feasibility and utility in vitro. Int J Pharm 202:11–20

    Article  PubMed  CAS  Google Scholar 

  24. De Vocht C, Ranquin A, Willaert R, Van Ginderachter JA, Vanhaecke T, Rogiers V et al (2009) Assessment of stability, toxicity and immunogenicity of new polymeric nanoreactors for use in enzyme replacement therapy of MNGIE. J Control Release 137:246–254

    Article  PubMed  Google Scholar 

  25. Kaminski MD, Xie Y, Mertz CJ, Finck MR, Chen H, Rosengart AJ (2008) Encapsulation and release of plasminogen activator from biodegradable magnetic microcarriers. Eur J Pharm Sci 35:96–103

    Article  PubMed  CAS  Google Scholar 

  26. Piras AM, Chiellini F, Fiumi C, Bartoli C, Chiellini E, Fiorentino B et al (2008) A new biocompatible nanoparticle delivery system for the release of fibrinolytic drugs. Int J Pharm 357:260–271

    Article  PubMed  CAS  Google Scholar 

  27. Prakash S, Chang TMS (1996) Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat Med 2:883–887

    Article  PubMed  CAS  Google Scholar 

  28. Korablyov VF, Zimran AF, Barenholz Y (1999) Cerebroside-beta-glucosidase encapsulation in liposomes for gaucher’s disease treatment revisited. Pharm Res 16:466–469

    Article  PubMed  CAS  Google Scholar 

  29. Belchetz P, Crawley JCW, Braidman I, Gregoriadis G (1977) Treatment of gaucher’s disease with liposome-entrapped glucocere-brosidase:β-glucosidase. Lancet 310:116–117

    Article  Google Scholar 

  30. Storm G, Vingerhoeds MH, Crommelin DJA, Haisma HJ (1997) Immunoliposomes bearing enzymes (immuno-enzymosomes) for site-specific activation of anticancer prodrugs. Adv Drug Deliv Rev 24:225–231

    Article  CAS  Google Scholar 

  31. Bilati U, Allémann E, Doelker E (2005) Strategic approaches for overcoming peptide and protein instability within biodegradable nano- and microparticles. Eur J Pharm 59:375–388

    Article  CAS  Google Scholar 

  32. Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30:512–523

    Article  PubMed  CAS  Google Scholar 

  33. Szebeni J, Bedőcs P, Rozsnyay Z, Weiszhár Z, Urbanics R, Rosivall L et al (2012) Liposome-induced complement activation and related cardiopulmonary distress in pigs: factors promoting reactogenicity of doxil and ambisome. Nanomedicine 8:176–184

    Article  PubMed  CAS  Google Scholar 

  34. Bakás L (2000) Influence of encapsulated enzyme on the surface properties of freeze-dried liposomes in trehalose. Colloids Surf B Biointerfaces 17:103–109

    Article  Google Scholar 

  35. Landesman-Milo D, Peer D (2012) Altering the immune response with lipid-based nanoparticles. J Control Release 161:600–608

    Article  PubMed  CAS  Google Scholar 

  36. Gutiérrez Millán C, Sayalero Marinero ML, Zarzuelo Castañeda A, Lanao JM (2004) Drug, enzyme and peptide delivery using erythrocytes as carriers. J Control Release 95:27–49

    Article  Google Scholar 

  37. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM (2008) Nano/micro technologies for delivering macromolecular therapeutics using poly(d, l-lactide-co-glycolide) and its derivatives. J Control Release 125:193–209

    Article  PubMed  CAS  Google Scholar 

  38. Couvreur P, Vauthier C (2006) Nanotechnology: intelligent design to treat complex disease. Pharm Res 23:1417–1450

    Article  PubMed  CAS  Google Scholar 

  39. Ye M, Kim S, Park K (2010) Issues in long-term protein delivery using biodegradable microparticles. J Control Release 146:241–260

    Article  PubMed  CAS  Google Scholar 

  40. Heemstra HE, van Weely S, Büller HA, Leufkens HGM, de Vrueh RLA (2009) Translation of rare disease research into orphan drug development: disease matters. Drug Discov Today 14:1166–1173

    Article  PubMed  Google Scholar 

  41. Besio R, Monzani E, Gioia R, Nicolis S, Rossi A, Casella L et al (2011) Improved prolidase activity assay allowed enzyme kinetic characterization and faster prolidase deficiency diagnosis. Clin Chim Acta 412:1814–1820

    Article  PubMed  CAS  Google Scholar 

  42. Ratnam DV, Ankola DD, Bhardwaj V, Sahana DK, Kumar MNVR (2006) Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective. J Control Release 113:189–207

    Article  PubMed  CAS  Google Scholar 

  43. Celik O, Akbuga J (2007) Preparation of superoxide dismutase loaded chitosan microspheres: characterization and release studies. Eur J Pharm Biopharm 66:42–47

    Article  PubMed  CAS  Google Scholar 

  44. Colonna C, Conti B, Perugini P, Pavanetto F, Modena T, Dorati R et al (2007) Chitosan glutamate nanoparticles for protein delivery: development and effect on prolidase stability. J Microencapsul 24:553–564

    Article  PubMed  CAS  Google Scholar 

  45. Viglio S, Annovazzi L, Conti B, Genta I, Perugini P, Zanone C et al (2006) The role of emerging techniques in the investigation of prolidase deficiency: from diagnosis to the development of a possible therapeutical approach. J Chromatogr B 832:1–8

    Article  CAS  Google Scholar 

  46. Perugini P, Hassan K, Genta I, Modena T, Pavanetto F, Cetta G et al (2005) Intracellular delivery of liposome-encapsulated prolidase in cultured fibroblasts from prolidase-deficient patients. J Control Release 102:181–190

    Article  PubMed  CAS  Google Scholar 

  47. Colonna C, Conti B, Perugini P, Pavanetto F, Modena T, Dorati R et al (2008) Site-directed pegylation as successful approach to improve the enzyme replacement in the case of prolidase. Int J Pharm 358:230–237

    Article  PubMed  CAS  Google Scholar 

  48. Reddy MK, Labhasetwar V (2009) Nanoparticle-mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia-reperfusion injury. FASEB J 23:1384–1395

    Article  PubMed  CAS  Google Scholar 

  49. Furukawa R, Yamada Y, Takenaga M, Igarashi R, Harashima H (2011) Octaarginine-modified liposomes enhance the anti-oxidant effect of lecithinized superoxide dismutase by increasing its cellular uptake. Biochem Biophys Res Commun 404:796–801

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Pastor, M., Esquisabel, A., Pedraz, J.L. (2013). Biomedical Applications of Immobilized Enzymes: An Update. In: Guisan, J. (eds) Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 1051. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-550-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-550-7_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-549-1

  • Online ISBN: 978-1-62703-550-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics