Skip to main content

Formulation Development of Antibody–Drug Conjugates

  • Protocol
  • First Online:
Antibody-Drug Conjugates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1045))

Abstract

Formulation development of an ADC resembles that of a conventional antibody, but the conjugated form introduces new molecular attributes such as drug-to-antibody ratio and stability of the drug itself that need to be considered. An extended set of analytical tools, coupled with understanding of how ADCs and conventional antibodies differ in terms of their stability, guides formulation selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goetze AM, Schenauer MR, Flynn GC (2010) Assessing monoclonal antibody product quality attribute criticality through clinical studies. MAbs 2(5):500–507. doi:10.4161/mabs.2.5.12897

    Article  PubMed  Google Scholar 

  2. Ducry L, Stump B (2010) Antibody–drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem 21(1):5–13. doi:10.1021/bc9002019

    Article  PubMed  CAS  Google Scholar 

  3. Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, DeBlanc RL, Gearing RP, Bovee TD, Siegall CB, Francisco JA, Wahl AF, Meyer DL, Senter PD (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21(7):778–784. doi:10.1038/nbt832

    Article  PubMed  CAS  Google Scholar 

  4. Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, Chen Y, Simpson M, Tsai SP, Dennis MS, Lu Y, Meng YG, Ng C, Yang J, Lee CC, Duenas E, Gorrell J, Katta V, Kim A, McDorman K, Flagella K, Venook R, Ross S, Spencer SD, Lee Wong W, Lowman HB, Vandlen R, Sliwkowski MX, Scheller RH, Polakis P, Mallet W (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26(8):925–932. doi:10.1038/nbt.1480

    Article  PubMed  CAS  Google Scholar 

  5. Chari RV, Martell BA, Gross JL, Cook SB, Shah SA, Blättler WA, McKenzie SJ, Goldmacher VS (1992) Immunoconjugates containing novel maytansinoids: promising anticancer drugs. Cancer Res 52(1):127–131

    PubMed  CAS  Google Scholar 

  6. Kovtun YV, Audette CA, Ye Y, Xie H, Ruberti MF, Phinney SJ, Leece BA, Chittenden T, Blattler WA, Goldmacher VS (2006) Antibody–drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res 66(6):3214–3221. doi:10.1158/0008-5472.CAN-05-3973

    Article  PubMed  CAS  Google Scholar 

  7. Wakankar AA, Feeney MB, Rivera J, Chen Y, Kim M, Sharma VK, Wang YJ (2010) Physicochemical stability of the antibody–drug conjugate Trastuzumab-DM1: changes due to modification and conjugation processes. Bioconjug Chem 21(9):1588–1595. doi:10.1021/bc900434c

    Article  PubMed  CAS  Google Scholar 

  8. Hinman L, Hamann P, Wallace R, Menendez A, Durr F, Upeslacis J (1993) Preparation and characterization of monoclonal-antibody conjugates of the calicheamicins – a novel and potent family of antitumor antibiotics. Cancer Res 53(14):3336–3342

    PubMed  CAS  Google Scholar 

  9. Daugherty AL, Mrsny RJ (2006) Formulation and delivery issues for monoclonal antibody therapeutics. Adv Drug Deliv Rev 58(5–6):686–706. doi:10.1016/J.Addr.2006.03.011

    Article  PubMed  CAS  Google Scholar 

  10. Wang W, Singh S, Zeng DL, King K, Nema S (2007) Antibody structure, instability, and formulation. J Pharm Sci 96(1):1–26. doi:10.1002/Jps.20727

    Article  PubMed  CAS  Google Scholar 

  11. Wang W, Singh S, Zeng DL, King K, Nema S (2006) Antibody structure, instability, and formulation. J Pharm Sci 96(1):1–26. doi:10.1002/jps.20727

    Article  Google Scholar 

  12. Moore J, Patapoff T, Cromwell M (1999) Kinetics and thermodynamics of dimer formation and dissociation for a recombinant humanized monoclonal antibody to vascular endothelial growth factor. Biochemistry 38(42):13960–13967

    Article  PubMed  CAS  Google Scholar 

  13. Kosky AA, Dharmavaram V, Ratnaswamy G, Manning MC (2009) Multivariate analysis of the sequence dependence of asparagine deamidation rates in peptides. Pharm Res 26(11):2417–2428. doi:10.1007/s11095-009-9953-8

    Article  PubMed  CAS  Google Scholar 

  14. Robinson NE (2001) Molecular clocks. Proc Natl Acad Sci 98(3):944–949. doi:10.1073/pnas.98.3.944

    Article  PubMed  CAS  Google Scholar 

  15. Cordoba A, Shyong B, Breen D, Harris R (2005) Non-enzymatic hinge region fragmentation of antibodies in solution. J Chromatogr B Anal Technol (Biomed Life Sci) 818(2):115–121. doi:10.1016/j.jchromb.2004.12.033

    Article  CAS  Google Scholar 

  16. Sun MMC, Beam KS, Cerveny CG, Hamblett KJ, Blackmore RS, Torgov MY, Handley FGM, Ihle NC, Senter PD, Alley SC (2005) Reduction−alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug Chem 16(5):1282–1290. doi:10.1021/bc050201y

    Article  PubMed  CAS  Google Scholar 

  17. Wu CW, Yarbrough LR (1976) N-(1-pyrene)maleimide: a fluorescent cross-linking reagent. Biochemistry 15(13):2863–2868

    Article  PubMed  CAS  Google Scholar 

  18. Baldwin AD, Kiick KL (2011) Tunable degradation of maleimide–thiol adducts in reducing environments. Bioconjug Chem 22(10):1946–1953. doi:10.1021/bc200148v

    Article  PubMed  CAS  Google Scholar 

  19. Chih H-W, Gikanga B, Yang Y, Zhang B (2011) Identification of amino acid residues responsible for the release of free drug from an antibody–drug conjugate utilizing lysine-succinimidyl ester chemistry. J Pharm Sci. doi:10.1002/jps.22485

    PubMed  Google Scholar 

  20. Shen B-Q, Xu K, Liu L, Raab H, Bhakta S, Kenrick M, Parsons-Reponte KL, Tien J, Yu S-F, Mai E, Li D, Tibbitts J, Baudys J, Saad OM, Scales SJ, McDonald PJ, Hass PE, Eigenbrot C, Nguyen T, Solis WA, Fuji RN, Flagella KM, Patel D, Spencer SD, Khawli LA, Ebens A, Wong WL, Vandlen R, Kaur S, Sliwkowski MX, Scheller RH, Polakis P, Junutula JR (2012) Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol 1–8. doi:10.1038/nbt.2108

  21. Wakankar A, Chen Y, Gokarn Y, Jacobson FS (2011) Analytical methods for physicochemical characterization of antibody drug conjugates. MAbs 3(2):161–172. doi:10.4161/mabs.3.2.14960

    Article  PubMed  Google Scholar 

  22. Suchocki JA, Sneden AT (1987) Characterization of decomposition products of maytansine. J Pharm Sci 76(9):738–743. doi:10.1002/jps.2600760913

    Article  PubMed  CAS  Google Scholar 

  23. Harris RJ, Shire SJ, Winter C (2004) Commercial manufacturing scale formulation and analytical characterization of therapeutic recombinant antibodies. Drug Dev Res 61(3):137–154. doi:10.1002/ddr.10344

    Article  CAS  Google Scholar 

  24. Hamblett KJ, Senter PD, Chace DF, Sun MMC, Lenox J, Cerveny CG, Kissler KM, Bernhardt SX, Kopcha AK, Zabinski RF, Meyer DL, Francisco JA (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res J Am Assoc Cancer Res 10(20):7063–7070. doi:10.1158/1078-0432.CCR-04-0789

    Article  CAS  Google Scholar 

  25. Siegel MM, Hollander IJ, Hamann PR, James JP, Hinman L, Smith BJ, Farnsworth APH, Phipps A, King DJ et al (1991) Matrix-assisted UV-laser desorption/ionization mass spectrometric analysis of monoclonal antibodies for the determination of carbohydrate, conjugated chelator, and conjugated drug content. Anal Chem 63(21):2470–2481. doi:10.1021/ac00021a016

    Article  PubMed  CAS  Google Scholar 

  26. Hunt GG, Nashabeh WW (1999) Capillary electrophoresis sodium dodecyl sulfate nongel sieving analysis of a therapeutic recombinant monoclonal antibody: a biotechnology perspective. Anal Chem 71(13):2390–2397

    Article  PubMed  CAS  Google Scholar 

  27. Jiang Y, Li C, Nguyen X, Muzammil S, Towers E, Gabrielson J, Narhi L (2011) Qualification of FTIR spectroscopic method for protein secondary structural analysis. J Pharm Sci 100(11):4631–4641. doi:10.1002/jps.22686

    Article  PubMed  CAS  Google Scholar 

  28. Houde D, Peng Y, Berkowitz S, Engen J (2010) Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol Cell Proteomics 9:1716–1728

    Google Scholar 

  29. Konermann L, Pan J, Liu Y-H (2011) Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem Soc Rev 40(3):1224. doi:10.1039/c0cs00113a

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Galush, W.J., Wakankar, A.A. (2013). Formulation Development of Antibody–Drug Conjugates. In: Ducry, L. (eds) Antibody-Drug Conjugates. Methods in Molecular Biology, vol 1045. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-541-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-541-5_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-540-8

  • Online ISBN: 978-1-62703-541-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics