Skip to main content

In Vitro Cytogenetic Assays: Chromosomal Aberrations and Micronucleus Tests

  • Protocol
  • First Online:
Genotoxicity Assessment

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1044))

Abstract

Chromosome damage is a very important indicator of genetic damage relevant to environmental and clinical studies. Detailed descriptions of the protocols used for detection of chromosomal aberrations induced by unknown agents in vitro both in the presence or the absence of rat liver-derived metabolizing systems are given. Structural chromosomal aberrations that can be observed and quantified at metaphases are described here. For the detection of chromosomal damage (fragments or whole chromosome) in interphase, the micronucleus test can be used and a description of this test is also presented. Criteria for determining a positive result using appropriate statistical methods are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erickson RP (2010) Somatic gene mutation and human disease other than cancer: an update. Mutat Res 705:96–106

    Article  PubMed  CAS  Google Scholar 

  2. De Flora S, Izzotti A (2007) Mutagenesis and cardiovascular diseases: molecular mechanisms, risk factors, and protective factors. Mutat Res 621:5–17

    Article  PubMed  Google Scholar 

  3. Hoeijmakers JH (2009) DNA damage, aging, and cancer. New Engl J Med 361:1475–1485

    Article  PubMed  CAS  Google Scholar 

  4. Frank SA (2010) Evolution in health and medicine Sackler colloquium: somatic evolutionary genomics: mutations during development cause highly variable genetic mosaicism with risk of cancer and neurodegeneration. Proc Natl Acad Sci USA 107:1725–1730

    Article  PubMed  CAS  Google Scholar 

  5. Slatter MA, Gennery AR (2010) Primary immunodeficiencies associated with DNA-repair disorders. Expert Rev Mol Med 685:146–165

    CAS  Google Scholar 

  6. Bender MA, Griggs HG, Bedford JS (1974) Mechanisms of chromosomal aberration production. III. Chemicals and ionising radiation. Mutat Res 23:197–212

    Article  PubMed  CAS  Google Scholar 

  7. Evans HJ (1961) Chromatid aberrations induced by gamma irradiation. I. The structure and frequency of chromatid interchanges in diploid and tetraploid cells of Vicia faba. Genetics 46:257–275

    PubMed  CAS  Google Scholar 

  8. Evans HJ, Scott D (1969) The induction of chromosome aberrations by nitrogen mustard and its dependence on DNA synthesis. Proc R Soc Lond B Biol Sci 173:491–512

    Article  PubMed  CAS  Google Scholar 

  9. Kihlman BA (1977) 1,3,7,9-tetramethyluric acid, a chromosome-damaging agent occurring as a natural metabolite in certain caffeine-producing plants. Mutat Res 39:297–315

    Article  PubMed  CAS  Google Scholar 

  10. Savage JRK (1975) Classification and relationships of induced chromosomal structural changes. J Med Genet 13:103–122

    Article  Google Scholar 

  11. Pincu M, Bass D, Norman A (1984) An improved micronuclear assay in lymphocytes. Mutat Res 139:61–65

    Article  PubMed  CAS  Google Scholar 

  12. Fenech M, Morley AA (1985) Measurement of micronuclei in lymphocytes. Mutat Res 147:29–36

    Article  PubMed  CAS  Google Scholar 

  13. Degrassi F, Tanzarella C (1988) Immunofluorescent staining of kinetochores in micronuclei: a new assay for the detection of aneuploidy. Mutat Res 203:339–345

    Article  PubMed  CAS  Google Scholar 

  14. Thomson EJ, Perry PE (1988) The identification of micronucleated chromosomes: a possible assay for aneuploidy. Mutagenesis 3:415–418

    Article  PubMed  CAS  Google Scholar 

  15. Eastmond DA, Tucker JD (1989) Identification of aneuploidy-inducing agents using cytokinesis-blocked human lymphocytes and an anti-kinetochore antibody. Environ Mol Mutagen 13:34–43

    Article  PubMed  CAS  Google Scholar 

  16. Eastmond DA, Pinkel D (1990) Detection of aneuploidy-inducing agents in human lymphocytes using fluorescence in situ hibridization with chromosome specific DNA probes. Mutat Res 234:303–318

    Article  PubMed  CAS  Google Scholar 

  17. Marshall RR, Murphy M, Kirkland DJ et al (1996) Fluorescence in situ hybridisation (FISH) with chromosome-specific centromeric probes: a sensitive method to detect aneuploidy. Mutat Res 372:233–245

    Article  PubMed  CAS  Google Scholar 

  18. Natarajan AT, Tates AD, van Buul PPV et al (1976) Cytogenetic effects of mutagens/carcinogens after activation in a microsomal system in vitro. Mutat Res 37:83–90

    Article  PubMed  CAS  Google Scholar 

  19. Kao FT, Puck TT (1968) Genetics of somatic mammalian cells, VII. Induction and isolation of nutritional mutants in Chinese hamster cells. Proc Natl Acad Sci USA 60:1275–1281

    Article  PubMed  CAS  Google Scholar 

  20. Ford DK, Yerganian G (1958) Observations on the chromosomes of Chinese hamster cells in tissue culture. J Natl Cancer Inst 21:393–425

    PubMed  CAS  Google Scholar 

  21. Koyama H et al (1970) A new cell line derived from newborn Chinese hamster lung tissue. Gann 61:161–167

    PubMed  CAS  Google Scholar 

  22. Xiao Y, Natarajan AT (1998) Development of arm-specific and subtelomeric region-specific painting probes for Chinese hamster chromosomes and their utility in chromosome identification of Chinese hamster cell lines. Cytogenet Cell Genet 83:8–13

    Article  Google Scholar 

  23. Matsushima T, Sawamura M, Hara K et al (1976) A safe substitute for polychlorinated biphenyls as an inducer of metabolic activation system. In: De Serres FJ, Fouts JR, Bend JR, Philpot RM (eds) In vitro metabolic activation in mutagenesis testing. Elsevier/North-Holland, Amsterdam, pp 85–88

    Google Scholar 

  24. Elliot BM, Combes RD, Elcombe CR et al (1992) Report of the UK Environmental Mutagen Society working party. Alternatives to Aroclor 1254-induced S9 in in vitro genotoxicity assays. Mutagenesis 7:175–177

    Article  Google Scholar 

  25. Halliwell B (2003) Oxidative stress in cell culture: an under-appreciated problem? FEBS Lett 540:3–6

    Article  PubMed  CAS  Google Scholar 

  26. Wee LM, Long LH, Whiteman M et al (2003) Factors affecting the ascorbate- and phenolic-dependent generation of hydrogen peroxide in Dulbecco’s modified Eagles medium. Free Radic Res 37:1123–1130

    Article  PubMed  CAS  Google Scholar 

  27. Long LH, Kirkland D, Whitwell J et al (2007) Different cytotoxic and clastogenic effects of epigallocatechin gallate in various cell-culture media due to variable rates of its oxidation in the culture medium. Mutat Res 634:177–183

    Article  PubMed  CAS  Google Scholar 

  28. Santoro A, Lioi MB, Monfregola J et al (2005) l-Carnitine protects mammalian cells from chromosome aberrations but not from inhibition of cell proliferation induced by hydrogen peroxide. Mutat Res 587:16–25

    Article  PubMed  Google Scholar 

  29. Parry JM, Parry E, Phrakonkham P et al (2010) Analysis of published data for top concentration considerations in mammalian genotoxicity testing. Mutagenesis 25:531–538

    Article  PubMed  CAS  Google Scholar 

  30. Galloway SM, Lorge E, Aardema MJ et al (2011) Workshop summary: top concentration for in vitro mammalian cell genotoxicity assays; and report from working group on toxicity measures and top concentration for in vitro cytogenetics assays (chromosome aberrations and micronucleus). Mutat Res 723:77–83

    Article  PubMed  CAS  Google Scholar 

  31. Brusick D (1987) Genotoxicity produced in cultured mammalian cell assays by treatment conditions. Mutat Res 189:1–80

    Article  PubMed  CAS  Google Scholar 

  32. Scott D, Galloway SM, Marshall RR et al (1991) International Commission for Protection Against Environmental Mutagens and Carcinogens. Genotoxicity under extreme culture conditions: a report from ICPEMC Task Group 9. Mutat Res 257:147–205

    Article  PubMed  CAS  Google Scholar 

  33. Seeberg AH, Mosesso P, Forster R (1988) High-dose-level effects in mutagenicity assays utilizing mammalian cells in culture. Mutagenesis 3:213–218

    Article  PubMed  CAS  Google Scholar 

  34. Kirkland D, Pfuhler S, Tweats D et al (2007) How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: report of an ECVAM workshop. Mutat Res 628:31–55

    Article  PubMed  CAS  Google Scholar 

  35. Hayashi M, Dearfield K, Kasper P et al (2011) Compilation and use of genetic toxicity historical control data. Mutat Res 723:87–90

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Mosesso, P., Cinelli, S., Natarajan, A.T., Palitti, F. (2013). In Vitro Cytogenetic Assays: Chromosomal Aberrations and Micronucleus Tests. In: Dhawan, A., Bajpayee, M. (eds) Genotoxicity Assessment. Methods in Molecular Biology, vol 1044. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-529-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-529-3_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-528-6

  • Online ISBN: 978-1-62703-529-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics