Skip to main content

An In Vivo Model System for Evaluation of the Host Response to Biomaterials

  • Protocol
  • First Online:
Wound Regeneration and Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1037))

Abstract

We describe an in vivo model system designed to evaluate the host response to implanted biomaterials: The partial thickness rat abdominal wall defect model. The model allows for determination of the temporal and spatial distribution of the cellular and vascular response, the remodeling of the implanted material and surrounding host soft tissue, and the function of the remodeled tissue over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badylak SF, Hoppo T, Nieponice A, Gilbert TW, Davison JM, Jobe BA (2011) Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: a regenerative medicine approach with a biologic scaffold. Tissue Eng Part A 17:1643–1650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246

    Article  PubMed  Google Scholar 

  3. Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, Langer R, Snyder EY (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA99:3024–3029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953

    Article  CAS  PubMed  Google Scholar 

  5. Mikos AG, McIntire LV, Anderson JM, Babensee JE (1998) Host response to tissue engineered devices. Adv Drug Deliv Rev 33:111–139

    Article  PubMed  Google Scholar 

  6. Chapekar MS (1996) Regulatory concerns in the development of biologic-biomaterial combinations, United States food and drug administration. J Biomed Mater Res 33:199–203

    Article  CAS  PubMed  Google Scholar 

  7. Ratner BD (1996) Biomaterials science: an introductions to materials in medicine. Elsevier Academic Press, Amsterdam, 484 pp

    Google Scholar 

  8. Anderson JM (2001) Biological responses to materials. Annu Rev Mater Res 31:81–110

    Article  CAS  Google Scholar 

  9. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  CAS  PubMed  Google Scholar 

  10. Clark RA, Lanigan JM, DellaPelle P, Manseau E, Dvorak HF, Colvin RB (1982) Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J Invest Dermatol 79:264–269

    Article  CAS  PubMed  Google Scholar 

  11. Witte MB, Barbul A (1997) General principles of wound healing. Surg Clin North Am 77:509–528

    Article  CAS  PubMed  Google Scholar 

  12. Nissen NN, Polverini PJ, Koch AE, Volin MV, Gamelli RL, DiPietro LA (1998) Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol 152:1445–1452

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF (2009) Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30:1482–1491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM (2008) Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A 14:1835–1842

    Article  CAS  PubMed  Google Scholar 

  15. Beattie AJ, Gilbert TW, Guyot JP, Yates AJ, Badylak SF (2009) Chemoattraction of progenitor cells by remodeling extracellular matrix scaffolds. Tissue Eng Part A 15:1119–1125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20:86–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Valentin JE, Badylak JS, McCabe GP, Badylak SF (2006) Extracellular matrix bioscaffolds for orthopaedic applications: a comparative histologic study. J Bone Joint Surg Am 88:2673–2686

    Article  PubMed  Google Scholar 

  18. Dadsetan M, Jones JA, Hiltner A, Anderson JM (2004) Surface chemistry mediates adhesive structure, cytoskeletal organization, and fusion of macrophages. J Biomed Mater Res A 71:439–448

    Article  PubMed  Google Scholar 

  19. Henson PM (1971) The immunologic release of constituents from neutrophil leukocytes. II. Mechanisms of release during phagocytosis, and adherence to nonphagocytosable surfaces. J Immunol 107:1547–1557

    CAS  PubMed  Google Scholar 

  20. Hernandez-Pando R, Bornstein QL, Aguila LD, Orozco EH, Madrigal VK, Martinez CE (2000) Inflammatory cytokine production by immunological and foreign body multinucleated giant cells. Immunology 100:352–358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kovacs EJ (1991) Fibrogenic cytokines: the role of immune mediators in the development of scar tissue. Immunol Today 12:17–23

    Article  CAS  PubMed  Google Scholar 

  22. Williams GT, Williams WJ (1983) Granulomatous inflammation—a review. J Clin Pathol 36:723–733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Turner NJ, Yates AJ, Weber DJ, Qureshi IR, Stolz DB, Gilbert TW, Badylak SF (2010) Xenogeneic extracellular matrix as an inductive scaffold for regeneration of a functioning musculotendinous junction. Tissue Eng Part A 16:3309–3317

    Article  CAS  PubMed  Google Scholar 

  24. Valentin JE, Turner NJ, Gilbert TW, Badylak SF (2010) Functional skeletal muscle formation with a biologic scaffold. Biomaterials 31:7475–7484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Valentin JE, Stewart-Akers AM, Gilbert TW, Badylak SF (2009) Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng Part A 15:1687–1694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Takebe J, Champagne CM, Offenbacher S, Ishibashi K, Cooper LF (2003) Titanium surface topography alters cell shape and modulates bone morphogenetic protein 2 expression in the J774A.1 macrophage cell line. J Biomed Mater Res A 64:207–216

    Article  CAS  PubMed  Google Scholar 

  27. Lu J, Descamps M, Dejou J, Koubi G, Hardouin P, Lemaitre J, Proust JP (2002) The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res 63:408–412

    Article  CAS  PubMed  Google Scholar 

  28. Labow RS, Sa D, Matheson LA, Santerre JP (2005) Polycarbonate-urethane hard segment type influences esterase substrate specificity for human-macrophage-mediated biodegradation. J Biomater Sci Polym Ed 16:1167–1177

    Article  CAS  PubMed  Google Scholar 

  29. Khouw IM, van Wachem PB, de Leij LF, van Luyn MJ (1998) Inhibition of the tissue reaction to a biodegradable biomaterial by monoclonal antibodies to IFN-gamma. J Biomed Mater Res 41:202–210

    Article  CAS  PubMed  Google Scholar 

  30. Brodbeck WG, Patel J, Voskerician G, Christenson E, Shive MS, Nakayama Y, Matsuda T, Ziats NP, Anderson JM (2002) Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo. Proc Natl Acad Sci USA99:10287–10292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  CAS  PubMed  Google Scholar 

  32. Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23:344–346

    Article  CAS  PubMed  Google Scholar 

  33. Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73:209–212

    Article  CAS  PubMed  Google Scholar 

  34. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  CAS  PubMed  Google Scholar 

  35. Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175:342–349

    Article  CAS  PubMed  Google Scholar 

  36. Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 298:R1173–R1187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ruffell D, Mourkioti F, Gambardella A, Kirstetter P, Lopez RG, Rosenthal N, Nerlov C (2009) A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci USA106:17475–17480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Nguyen C, Boldea RC, Roy S, Shaarawy T, Uffer S, Mermoud A (2006) Outflow mechanisms after deep sclerectomy with two different designs of collagen implant in an animal model. Graefes Arch Clin Exp Ophthalmol 244:1659–1667

    Article  CAS  PubMed  Google Scholar 

  39. Barbolt TA, Odin M, Leger M, Kangas L, Hoiste J, Liu SH (2001) Biocompatibility evaluation of dura mater substitutes in an animal model. Neurol Res 23:813–820

    Article  CAS  PubMed  Google Scholar 

  40. VandeVord PJ, Matthew HW, DeSilva SP, Mayton L, Wu B, Wooley PH (2002) Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res 59:585–590

    Article  CAS  PubMed  Google Scholar 

  41. Jeyanthi R, Rao KP (1990) In vivo biocompatibility of collagen-poly(hydroxyethyl methacrylate) hydrogels. Biomaterials 11:238–243

    Article  CAS  PubMed  Google Scholar 

  42. Buchen SY, Cunanan CM, Gwon A, Weinschenk JI, Gruber L, Knight PM (2001) Assessing intraocular lens calcification in an animal model. J Cataract Refract Surg 27:1473–1484

    Article  CAS  PubMed  Google Scholar 

  43. Gosain AK, Riordan PA, Song L, Amarante MT, Kalantarian B, Nagy PG, Wilson CR, Toth JM, McIntyre BL (2004) A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part II. Bioengineering implants to optimize bone replacement in reconstruction of cranial defects. Plast Reconstr Surg 114:1155–1163, discussion 64–65

    Article  PubMed  Google Scholar 

  44. Gad SC (2002) Safety evaluation of medical devices. Marcel Dekker, New York, NY

    Google Scholar 

  45. Bischoff F, Bryson G (1964) Carcinogenesis through solid state surfaces. Prog Exp Tumor Res 5:85–133

    CAS  PubMed  Google Scholar 

  46. Agrawal V, Johnson SA, Reing J, Zhang L, Tottey S, Wang G, Hirschi KK, Braunhut S, Gudas LJ, Badylak SF (2010) Epimorphic regeneration approach to tissue replacement in adult mammals. Proc Natl Acad Sci USA107:3351–3355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Li F, Li W, Johnson S, Ingram D, Yoder M, Badylak S (2004) Low-molecular-weight peptides derived from extracellular matrix as chemoattractants for primary endothelial cells. Endothelium 11:199–206

    Article  CAS  PubMed  Google Scholar 

  48. Badylak S, Kokini K, Tullius B, Simmons-Byrd A, Morff R (2002) Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res 103:190–202

    Article  PubMed  Google Scholar 

  49. Brown SH, Banuelos K, Ward SR, Lieber RL (2010) Architectural and morphological assessment of rat abdominal wall muscles: comparison for use as a human model. J Anat 217:196–202

    Article  PubMed Central  PubMed  Google Scholar 

  50. Markovic SN, Knight PR, Murasko DM (1993) Inhibition of interferon stimulation of natural killer cell activity in mice anesthetized with halothane or isoflurane. Anesthesiology 78:700–706

    Article  CAS  PubMed  Google Scholar 

  51. Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311

    Article  CAS  PubMed  Google Scholar 

  52. Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci 90:3710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sicari, B., Turner, N., Badylak, S.F. (2013). An In Vivo Model System for Evaluation of the Host Response to Biomaterials. In: Gourdie, R., Myers, T. (eds) Wound Regeneration and Repair. Methods in Molecular Biology, vol 1037. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-505-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-505-7_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-504-0

  • Online ISBN: 978-1-62703-505-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics