Skip to main content

The Geisler Method: Tracing Activity-Dependent cGMP Plasticity Changes upon Double Detection of mRNA and Protein on Brain Slices

  • Protocol
  • First Online:
Guanylate Cyclase and Cyclic GMP

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1020))

Abstract

We recently demonstrated that an increase of guanosine 3′,5′-cyclic monophosphate (cGMP) signaling could protect the inner ear from noise-induced hair cell damage. Noise exposure not only damages hair cells but also alters the central responsiveness to sound leading to plasticity changes. cGMP signaling has long been known to play a crucial role for plasticity changes and long-term potentiation (LTP). To get a first insight into the role of cGMP for noise-induced plasticity changes we aimed to co-trace the mRNA and protein of plasticity-related genes as, e.g., the immediate early gene Arc (activity-regulated cytoskeletal protein) with markers for the cGMP pathway. We developed a method that permits the simultaneous monitoring of mRNA and protein through light microscopy to visualize gene expression in neurons and synapses of its processes. Accordingly, different from previous fluorescence-based assays that detect, e.g., fluorochrome-labeled Arc antibodies and Arc mRNA, we describe here a methodology that allows the detection of mRNA and protein of synaptic genes using nonfluorescent stable tracers for high-resolution observation of activity-dependent plasticity changes using light microscopy even after weeks or months.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Domek-Lopacinska K, Strosznajder JB (2005) Cyclic GMP metabolism and its role in brain physiology. J Physiol Pharmacol 56(Suppl 2):15–34

    PubMed  Google Scholar 

  2. Jaumann M, Dettling J, Gubelt M, Zimmermann U, Gerling A, Paquet-Durand F, Feil S, Wolpert S, Franz C, Varakina K, Xiong H, Brandt N, Kuhn S, Geisler HS, Rohbock K, Ruth P, Schlossmann J, Hutter J, Sandner P, Feil R, Engel J, Knipper M, Ruttiger L (2012) cGMP-Prkg1 signaling and Pde5 inhibition shelter cochlear hair cells and hearing function. Nat Med 18(2):252–259. doi:10.1038/nm.2634nm.2634 [pii]

    Article  PubMed  CAS  Google Scholar 

  3. Knipper M, Müller M, Zimmermann U (2012) Molecular mechanism of tinnitus. J.J. Eggermont et al. (eds.), Tinnitus, Springer Handbook of Auditory Research 47, Springer Science+Business Media New York 2012. doi: 10.1007/978-1-4614-3728-4_3

    Google Scholar 

  4. Zuccotti A, Kuhn S, Johnson SL, Franz C, Singer W, Hecker D, Geisler HS, Köpschall I, Rohbock K, Gutsche K, Dlugaiczyk J, Schick B, Marcotti W, Rüttiger L, Schimmang T, Knipper M (2012) Lack of brain-derived ­neurotrophic factor hampers inner hair cell synapse physiology, but protects against noise induced hearing loss. J Neurosci 32(25):8545–8553

    Article  PubMed  CAS  Google Scholar 

  5. Rüttiger L, Singer W, Panford-Walsh R, Matsumoto M, Lee SC, Zuccotti A, Zimmermann U, Jaumann M, Rohbock K, Xiong H, Knipper M (2013) The reduced cochlear output and the failure to adapt the central auditory response causes tinnitus in noise exposed rats. PLoS One 8(3):e57247. doi:10.1371/journal.pone.0057247

    Article  Google Scholar 

  6. Knipper M, Zimmermann U, Müller M (2010) Molecular aspects of tinnitus. Hear Res 266(1–2):60–69. doi:S0378-5955(09)00193-2 [pii] 10.1016/j.heares.2009.07.013

    Article  PubMed  CAS  Google Scholar 

  7. Hinton DE, Chhean D, Pich V, Hofmann SG, Barlow DH (2006) Tinnitus among Cambodian refugees: relationship to PTSD severity. J Trauma Stress 19(4):541–546. doi:10.1002/jts.20138

    Article  PubMed  Google Scholar 

  8. Neigh GN, Gillespie CF, Nemeroff CB (2009) The neurobiological toll of child abuse and neglect. Trauma Violence Abuse 10(4):389–410. doi:1524838009339758 [pii] 10.1177/1524838009339758

    Article  PubMed  Google Scholar 

  9. Jastreboff PJ (1990) Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 8(4):221–254

    Article  PubMed  CAS  Google Scholar 

  10. Landgrebe M, Langguth B, Rosengarth K, Braun S, Koch A, Kleinjung T, May A, de Ridder D, Hajak G (2009) Structural brain changes in tinnitus: grey matter decrease in auditory and non-auditory brain areas. Neuroimage 46(1):213–218. doi:S1053-8119(09)00141-4 [pii] 10.1016/j.neuroimage.2009.01.069

    Article  PubMed  Google Scholar 

  11. Lockwood AH, Salvi RJ, Coad ML, Towsley ML, Wack DS, Murphy BW (1998) The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity. Neurology 50(1):114–120

    Article  PubMed  CAS  Google Scholar 

  12. Shulman A, Strashun AM, Afriyie M, Aronson F, Abel W, Goldstein B (1995) SPECT imaging of brain and tinnitus-neurotologic/neurologic implications. Int Tinnitus J 1(1):13–29

    PubMed  Google Scholar 

  13. Mirz F, Gjedde A, Sodkilde-Jrgensen H, Pedersen CB (2000) Functional brain imaging of tinnitus-like perception induced by aversive auditory stimuli. Neuroreport 11(3):633–637

    Article  PubMed  CAS  Google Scholar 

  14. Singer W, Zuccotti A, Jaumann M, Lee SC, Panford-Walsh R, Xiong H, Zimmermann U, Franz C, Geisler HS, Köpschall I, Rohbock K, Varakina K, Verpoorten S, Reinbothe T, Schimmang T, Rüttiger L, Knipper M (2013) Noise-induced inner hair cell ribbon loss disturbs central arc mobilization: a novel molecular paradigm for understanding tinnitus. Mol Neurobiol 47(1):261–279. doi:10.1007/s12035-012-8372-8

    CAS  Google Scholar 

  15. Bramham CR, Alme MN, Bittins M, Kuipers SD, Nair RR, Pai B, Panja D, Schubert M, Soule J, Tiron A, Wibrand K (2010) The Arc of synaptic memory. Exp Brain Res 200(2):125–140. doi:10.1007/s00221-009-1959-2

    Article  PubMed  Google Scholar 

  16. Link W, Konietzko U, Kauselmann G, Krug M, Schwanke B, Frey U, Kuhl D (1995) Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc Natl Acad Sci USA 92(12):5734–5738

    Article  PubMed  CAS  Google Scholar 

  17. Bramham CR, Worley PF, Moore MJ, Guzowski JF (2008) The immediate early gene arc/arg3.1: regulation, mechanisms, and function. J Neurosci 28(46):11760–11767

    Article  PubMed  CAS  Google Scholar 

  18. Tzingounis AV, Nicoll RA (2006) Arc/Arg3.1: linking gene expression to synaptic plasticity and memory. Neuron 52(3):403–407

    Article  PubMed  CAS  Google Scholar 

  19. Gallo EF, Iadecola C (2011) Neuronal nitric oxide contributes to neuroplasticity-associated protein expression through cGMP, protein kinase G, and extracellular signal-regulated kinase. J Neurosci 31(19):6947–6955. doi:10.1523/JNEUROSCI.0374-11.2011

    Article  PubMed  CAS  Google Scholar 

  20. Brackmann M, Schuchmann S, Anand R, Braunewell KH (2005) Neuronal Ca2+ sensor protein VILIP-1 affects cGMP signalling of guanylyl cyclase B by regulating clathrin-dependent receptor recycling in hippocampal neurons. J Cell Sci 118(Pt 11):2495–2505. doi:10.1242/jcs.02376

    Article  PubMed  CAS  Google Scholar 

  21. Hindley S, Juurlink BH, Gysbers JW, Middlemiss PJ, Herman MA, Rathbone MP (1997) Nitric oxide donors enhance neurotrophin-induced neurite outgrowth through a cGMP-dependent mechanism. J Neurosci Res 47(4):427–439

    Article  PubMed  CAS  Google Scholar 

  22. Ramirez-Amaya V, Vazdarjanova A, Mikhael D, Rosi S, Worley PF, Barnes CA (2005) Spatial exploration-induced Arc mRNA and protein expression: evidence for selective, network-specific reactivation. J Neurosci 25(7):1761–1768

    Article  PubMed  CAS  Google Scholar 

  23. Margeta-Mitrovic M, Mitrovic I, Riley RC, Jan LY, Basbaum AI (1999) Immunohistochemical localization of GABA(B) receptors in the rat central nervous system. J Comp Neurol 405(3):299–321

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Singer, W., Geisler, HS., Knipper, M. (2013). The Geisler Method: Tracing Activity-Dependent cGMP Plasticity Changes upon Double Detection of mRNA and Protein on Brain Slices. In: Krieg, T., Lukowski, R. (eds) Guanylate Cyclase and Cyclic GMP. Methods in Molecular Biology, vol 1020. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-459-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-459-3_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-458-6

  • Online ISBN: 978-1-62703-459-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics