Skip to main content

Noninvasive Microelectrode Ion Flux Estimation Technique (MIFE) for the Study of the Regulation of Root Membrane Transport by Cyclic Nucleotides

  • Protocol
  • First Online:
Cyclic Nucleotide Signaling in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1016))

Abstract

Changes in ion permeability and subsequently intracellular ion concentrations play a crucial role in intracellular and intercellular communication and, as such, confer a broad array of developmental and adaptive responses in plants. These changes are mediated by the activity of plasma-membrane based transport proteins many of which are controlled by cyclic nucleotides and/or other signaling molecules. The MIFE technique for noninvasive microelectrode ion flux measuring allows concurrent quantification of net fluxes of several ions with high spatial (μm range) and temporal (ca. 5 s) resolution, making it a powerful tool to study various aspects of downstream signaling events in plant cells. This chapter details basic protocols enabling the application of the MIFE technique to study regulation of root membrane transport in general and cyclic nucleotide mediated transport in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417

    PubMed  CAS  Google Scholar 

  2. Thiel G, Weise R (1999) Auxin augments conductance of K+ inward rectifier in maize coleoptile protoplasts. Planta 208:38–45

    Article  CAS  Google Scholar 

  3. Hager A (2003) Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J Plant Res 116:483–505

    Article  PubMed  CAS  Google Scholar 

  4. Batelli G, Verslues PE, Agius F, Qiu Q, Fujii H, Pan S et al (2007) SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Mol Cell Biol 27:7781–7790

    Article  PubMed  CAS  Google Scholar 

  5. Shabala L, Cuin TA, Newman IA, Shabala S (2005) Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta 222:1041–1050

    Article  PubMed  CAS  Google Scholar 

  6. Kim TH, Bohmer M, Hu HH, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding Abscisic acid, Co2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  PubMed  CAS  Google Scholar 

  7. Newton RP, Smith CJ (2004) Cyclic nucleotides. Phytochemistry 65:2423–2437

    Article  PubMed  CAS  Google Scholar 

  8. Felle HH (2001) pH: Signal and messenger in plant cells. Plant Biol 3:577–591

    Article  CAS  Google Scholar 

  9. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  10. Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    Article  PubMed  CAS  Google Scholar 

  11. Meijer HJG, Munnik T (2003) Phospholipid-based signaling in plants. Annu Rev Plant Biol 54:265–306

    Article  PubMed  CAS  Google Scholar 

  12. Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258

    Article  PubMed  CAS  Google Scholar 

  13. Chaumont F, Moshelion M, Daniels MJ (2005) Regulation of plant aquaporin activity. Biol Cell 97:749–764

    Article  PubMed  CAS  Google Scholar 

  14. Laohavisit A, Davies JM (2010) The role of ion channels in plant salt tolerance. In: Demidchik V, Maathuis F (eds) Ion channels and plant stress responses, signaling and communication in plants. Springer, Berlin, pp 69–86

    Chapter  Google Scholar 

  15. Monshausen GB, Gilroy S (2009) Feeling green: mechanosensing in plants. Trends Cell Biol 19:228–235

    Article  PubMed  Google Scholar 

  16. Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  PubMed  CAS  Google Scholar 

  17. Amtmann A, Beilby MJ (2010) The role of ion channels in plant salt tolerance. In: Demidchik V, Maathuis F (eds) Ion channels and plant stress responses, signaling and communication in plants. Springer, Berlin, pp 23–46

    Chapter  Google Scholar 

  18. Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H et al (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  CAS  Google Scholar 

  19. Shabala S (2003) Regulation of potassium transport in leaves: from molecular to tissue level. Ann Bot 92:627–634

    Article  PubMed  CAS  Google Scholar 

  20. Very AA, Sentenac H (2002) Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7:168–175

    Article  PubMed  CAS  Google Scholar 

  21. Krol E, Trebacz K (2000) Ways of ion channel gating in plant cells. Ann Bot 86:449–469

    Article  CAS  Google Scholar 

  22. Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+ and K+-permeable channels in plant root cells. J Cell Sci 116:81–88

    Article  PubMed  CAS  Google Scholar 

  23. Bunney TD, van den Wijngaard PWJ, de Boer AH (2002) 14-3-3 protein regulation of proton pumps and ion channels. Plant Mol Biol 50:1041–1051

    Article  PubMed  CAS  Google Scholar 

  24. Li LG, Kim BG, Cheong YH, Pandey GK, Luan S (2006) A Ca2+ signaling pathway regulates a K  +  channel for low-K response in Arabidopsis. Proc Natl Acad Sci U S A 103:12625–12630

    Article  PubMed  CAS  Google Scholar 

  25. Demidchik V, Essah PA, Tester M (2004) Glutamate activates cation currents in the plasma membrane of Arabidopsis root cells. Planta 219:167–175

    Article  PubMed  CAS  Google Scholar 

  26. Michard E, Lima PT, Borges F, Silva AC, Portes MT, Carvalho JE et al (2011) Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332:434–437

    Article  PubMed  CAS  Google Scholar 

  27. Suh BC, Hille B (2005) Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr Opin Neurobiol 15:370–378

    Article  PubMed  CAS  Google Scholar 

  28. Talke IN, Blaudez D, Maathuis FJM, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci 8:286–293

    Article  PubMed  CAS  Google Scholar 

  29. Maathuis FJM, Filatov V, Herzyk P, Krijger GC, Axelsen KB, Chen SX et al (2003) Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J 35:675–692

    Article  PubMed  CAS  Google Scholar 

  30. Gojon A, Nacry P, Davidian JC (2009) Root uptake regulation: a central process for NPS homeostasis in plants. Curr Opin Plant Biol 12:328–338

    Article  PubMed  CAS  Google Scholar 

  31. Shabala L, Ross T, McMeekin T, Shabala S (2006) Non-invasive microelectrode ion flux measurements to study adaptive responses of microorganisms to the environment. FEMS Microbiol Rev 30:472–486

    Article  PubMed  CAS  Google Scholar 

  32. Demidchik V, Shang ZL, Shin R, Thompson E, Rubio L, Laohavisit A et al (2009) Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca2+ channels. Plant J 58:903–913

    Article  PubMed  CAS  Google Scholar 

  33. Demidchik V, Shang ZL, Shin R, Colaco R, Laohavisit A, Shabala S et al (2011) Receptor-like activity evoked by extracellular ADP in Arabidopsis root epidermal plasma membrane. Plant Physiol 156:1375–1385

    Article  PubMed  CAS  Google Scholar 

  34. Zepeda-Jazo I, Velarde-Buendia AM, Enriquez-Figueroa R, Bose J, Shabala S, Muniz-Murguia J et al (2011) Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiol 157:2167–2180

    Article  PubMed  CAS  Google Scholar 

  35. Maryani MM, Shabala SN, Gehring CA (2000) Plant natriuretic peptide immunoreactants modulate plasma-membrane H+ gradients in Solanum tuberosum L. leaf tissue vesicles. Arch Biochem Biophys 376:456–458

    Article  PubMed  CAS  Google Scholar 

  36. Ludidi N, Morse M, Sayed M, Wherrett T, Shabala S, Gehring C (2004) A recombinant plant natriuretic peptide causes rapid and spatially differentiated K+, Na+ and H+ flux changes in Arabidopsis thaliana roots. Plant Cell Physiol 45:1093–1098

    Article  PubMed  CAS  Google Scholar 

  37. Pharmawati M, Shabala SN, Newman IA, Gehring CA (1999) Natriuretic peptides and cGMP modulate K+, Na+, and H+ fluxes in Zea mays roots. Mol Cell Biol Res Commun 2:53–57

    Article  PubMed  CAS  Google Scholar 

  38. Tegg RS, Melian L, Wilson CR, Shabala S (2005) Plant cell growth and ion flux responses to the streptomycete phytotoxin thaxtomin A: calcium and hydrogen flux patterns revealed by the non-invasive MIFE technique. Plant Cell Physiol 46:638–648

    Article  PubMed  CAS  Google Scholar 

  39. Lew RR, Levina NN, Shabala L, Anderca MI, Shabala SN (2006) Role of a mitogen-activated protein kinase cascade in ion flux-mediated turgor regulation in fungi. Eukaryot Cell 5:480–487

    Article  PubMed  CAS  Google Scholar 

  40. Babourina O, Newman I, Shabala S (2002) Blue light-induced kinetics of H+ and Ca2+ fluxes in etiolated wild-type and phototropin-mutant Arabidopsis seedlings. Proc Natl Acad Sci U S A 99:2433–2438

    Article  PubMed  CAS  Google Scholar 

  41. Zivanovic BD, Cuin TA, Shabala S (2007) Spectral and dose dependence of light-induced ion flux responses from maize leaves and their involvement in leaf expansion growth. Plant Cell Physiol 48:598–605

    Article  PubMed  CAS  Google Scholar 

  42. Levina NN, Dunina-Barkovskaya AY, Shabala S, Lew RR (2002) Blue light modulation of ion transport in the slime mutant of Neurospora crassa. J Membr Biol 188:213–226

    Article  PubMed  CAS  Google Scholar 

  43. Shabala S, Newman I (2000) Salinity effects on the activity of plasma membrane H+ and Ca2+ transporters in bean leaf mesophyll: masking role of the cell wall. Ann Bot 85:681–686

    Article  CAS  Google Scholar 

  44. Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28:1230–1246

    Article  CAS  Google Scholar 

  45. Knowles A, Shabala S (2004) Overcoming the problem of non-ideal liquid ion exchanger selectivity in microelectrode ion flux measurements. J Membr Biol 202:51–59

    Article  PubMed  CAS  Google Scholar 

  46. Cuin TA, Bose J, Stefano G, Jha D, Tester M, Mancuso S et al (2011) Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods. Plant Cell Environ 34:947–961

    Article  PubMed  CAS  Google Scholar 

  47. Shabala SN, Newman IA, Morris J (1997) Oscillations in H+ and Ca2+ ion fluxes around the elongation region of corn roots and effects of external pH. Plant Physiol 113:111–118

    PubMed  CAS  Google Scholar 

  48. Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW et al (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960

    Article  PubMed  CAS  Google Scholar 

  49. Newman IA (2001) Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ 24:1–14

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ordoñez, N.M., Shabala, L., Gehring, C., Shabala, S. (2013). Noninvasive Microelectrode Ion Flux Estimation Technique (MIFE) for the Study of the Regulation of Root Membrane Transport by Cyclic Nucleotides. In: Gehring, C. (eds) Cyclic Nucleotide Signaling in Plants. Methods in Molecular Biology, vol 1016. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-441-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-441-8_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-440-1

  • Online ISBN: 978-1-62703-441-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics