Skip to main content

Lipo-oligoarginine-Based Intracellular Delivery

  • Protocol
  • First Online:
Cellular and Subcellular Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 991))

  • 2544 Accesses

Abstract

Efficient cellular delivery, including plasma membrane permeability and intracellular metabolic stability, is a crucial factor determining the success of therapeutic agents. Cell-penetrating peptides (CPPs) have been widely used for the intracellular delivery of various bioactive molecules into cells to modify cellular functions. We have developed an improved CPP-based cellular delivery vector, named lipo-oligoarginine peptide (LOAP), by conjugating an oligoarginine peptide with a fatty acid moiety. The prepared LOAPs were further stabilized by introducing different combinations of d-Arg residues into the peptide backbone and were systematically evaluated for their membrane-penetrating properties and metabolic stabilities in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MBHA:

4-Methylbenzhydrylamine

Fmoc:

9-Fluorenylmethyloxycarbonyl

Pbf:

2,2,4,6,7-Pentamethyldihydrobenzofuran-5-sulfonyl

Mtt:

Methyltrityl

TA:

Thioanisole

EDT:

Ethandithiol

References

  1. Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    Article  CAS  Google Scholar 

  2. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193

    Article  CAS  Google Scholar 

  3. Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55:1179–1188

    Article  CAS  Google Scholar 

  4. Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56:318–325

    Article  CAS  Google Scholar 

  5. Lee JS, Tung CH (2010) Lipo-oligoarginines as effective delivery vectors to promote cellular uptake. Mol Biosyst 6:2049–2055

    Article  CAS  Google Scholar 

  6. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840

    Article  CAS  Google Scholar 

  7. Lee JS, Tung C-H (2011) Enhanced cellular uptake and metabolic stability of lipo-­oligoarginine peptides. Biopolymers. 96:772–779

    Google Scholar 

  8. O’Donnell JM, Alpert NM, White LT, Lewandowski ED (2002) Coupling of mitochondrial fatty acid uptake to oxidative flux in the intact heart. Biophys J 82:11–18

    Article  Google Scholar 

  9. Fernandez-Carneado J, Kogan MJ, Van Mau N, Pujals S, Lopez-Iglesias C, Heitz F, Giralt E (2005) Fatty acyl moieties: improving Pro-rich peptide uptake inside HeLa cells. J Pept Res 65:580–590

    Article  CAS  Google Scholar 

  10. Futaki S, Ohashi W, Suzuki T, Niwa M, Tanaka S, Ueda K, Harashima H, Sugiura Y (2001) Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjug Chem 12:1005–1011

    Article  CAS  Google Scholar 

  11. Koppelhus U, Shiraishi T, Zachar V, Pankratova S, Nielsen PE (2008) Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain. Bioconjug Chem 19:1526–1534

    Article  CAS  Google Scholar 

  12. Pham W, Kircher MF, Weissleder R, Tung CH (2004) Enhancing membrane permeability by fatty acylation of oligoarginine peptides. Chembiochem 5:1148–1151

    Article  CAS  Google Scholar 

  13. Silvius JR, l’Heureux F (1994) Fluorimetric evaluation of the affinities of isoprenylated peptides for lipid bilayers. Biochemistry 33:3014–3022

    Article  CAS  Google Scholar 

  14. Garner P, Sherry B, Moilanen S, Huang Y (2001) In vitro stability of alpha-helical peptide nucleic acids (alphaPNAs). Bioorg Med Chem Lett 11:2315–2317

    Article  CAS  Google Scholar 

  15. Elmquist A, Langel U (2003) In vitro uptake and stability study of pVEC and its all-D analog. Biol Chem 384:387–393

    Article  CAS  Google Scholar 

  16. Trehin R, Nielsen HM, Jahnke HG, Krauss U, Beck-Sickinger AG, Merkle HP (2004) Metabolic cleavage of cell-penetrating peptides in contact with epithelial models: human calcitonin (hCT)-derived peptides, Tat(47–57) and penetratin(43–58). Biochem J 382:945–956

    Article  CAS  Google Scholar 

  17. Rennert R, Wespe C, Beck-Sickinger AG, Neundorf I (2006) Developing novel hCT derived cell-penetrating peptides with improved metabolic stability. Biochim Biophys Acta 1758:347–354

    Article  CAS  Google Scholar 

  18. Foerg C, Merkle HP (2008) On the biomedical promise of cell penetrating peptides: limits versus prospects. J Pharm Sci 97:144–162

    Article  CAS  Google Scholar 

  19. Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 97:13003–13008

    Article  CAS  Google Scholar 

  20. Vives E, Richard JP, Rispal C, Lebleu B (2003) TAT peptide internalization: seeking the mechanism of entry. Curr Protein Pept Sci 4:125–132

    Article  CAS  Google Scholar 

  21. Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R, Brock R (2007) A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8:848–866

    Article  CAS  Google Scholar 

  22. Bourel L, Carion O, Gras-Masse H, Melnyk O (2000) The deprotection of Lys(Mtt) revisited. J Pept Sci 6:264–270

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by NIH CA135312, CA114149, and CA126752.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lee, J.S., Tung, CH. (2013). Lipo-oligoarginine-Based Intracellular Delivery. In: Weissig, V., Elbayoumi, T., Olsen, M. (eds) Cellular and Subcellular Nanotechnology. Methods in Molecular Biology, vol 991. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-336-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-336-7_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-335-0

  • Online ISBN: 978-1-62703-336-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics