Skip to main content

A Method to Map Spatiotemporal pH Changes in a Multicellular Living Organism Using a DNA Nanosensor

  • Protocol
  • First Online:
Cellular and Subcellular Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 991))

Abstract

Environmental pH has a determining role in the structure of biomolecules, thus playing an important role in regulating cellular activities. Eukaryotic cells must, therefore, strive to stringently regulate pH in various intracellular organelles so as to confer normal functioning at the level of whole organism. Several pH-sensitive probes have been reported, each of which can be used to map the pH dependence of an in vivo process. However, these probes suffer from some inherent drawbacks. Here we demonstrate the utility of an externally introduced, pH-triggered DNA nanomachine inside the multicellular eukaryote Caenorhabditis elegans. The nanomachine uses FRET to effectively map spatiotemporal pH changes associated with endocytosis in coelomocytes of wild type as well as mutant worms, in a variety of genetic backgrounds. It shows highest dynamic range in the pH regime 5.3–6.6 and has a half-life of ∼8 h, thus positioning it well to interrogate a variety of pH-correlated biological phenomena in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11:50–61

    Article  CAS  Google Scholar 

  2. Stevens TH, Forgac M (1997) Structure, function and regulation of the vacuolar (H+) ATPase. Annu Rev Cell Dev Biol 13:779–808

    Article  CAS  Google Scholar 

  3. Syntichaki P, Samara C, Tavernarakis N (2005) The vacuolar H+-ATPase mediates intracellular acidification required for neurodegeneration in C. elegans. Curr Biol 15:1249–1254

    Article  CAS  Google Scholar 

  4. de Voer G, Peters D, Taschner PEM (2008) Caenorhabditis elegans as a model for lysosomal storage disorders. Biochim Biophys Acta 1782:433–446

    Article  Google Scholar 

  5. Lee S-K, Li W, Ryu S-E, Rhim TY, Ahnn J (2010) Vacuolar (H+)-ATPases in Caenorhabditis elegans: What can we learn about giant H+ pumps from tiny worms? Biochim Biophys Acta 1797:1687–1695

    Article  CAS  Google Scholar 

  6. Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Article  CAS  Google Scholar 

  7. Rasmussen MB, Oddershede LB, Siegumfeldt H (2008) Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria. Appl Environ Microbiol 74:2441–2446

    Article  CAS  Google Scholar 

  8. Dittman JS, Kaplan JM (2006) Factors regulating the abundance and localization of synaptobrevin in the plasma membrane. Proc Natl Acad Sci USA 103:11399–11404

    Article  CAS  Google Scholar 

  9. Poskanzer KE, Davis GW (2004) Mobilization and fusion of a non-recycling pool of synaptic vesicles under conditions of endocytic blockade. Neuropharmacology 47:714–723

    Article  CAS  Google Scholar 

  10. Lanz E, Gregor M, Slavik J, Kotyk A (1997) Use of FITC as a fluorescent probe for intracellular pH measurement. J Fluoresc 7:317–319

    Article  CAS  Google Scholar 

  11. Martin GR, Jain RK (1994) Noninvasive measurement of interstitial pH profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy. Cancer Res 4:5670–5674

    Google Scholar 

  12. Siegumfeldt H, Rechinger KB, Jakobsen M (1999) Use of fluorescence ratio imaging for intracellular pH determination of individual bacterial cells in mixed cultures. Microbiology 145:1703–1709

    Article  CAS  Google Scholar 

  13. Modi S, Swetha MG, Goswami D, Gupta GD, Mayor S, Krishnan Y (2009) A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat Nanotechnol 4(325–330)

    Google Scholar 

  14. Surana S, Bhat JM, Koushika SP, Krishnan Y (2011) A DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. Nat Commun 2:340, doi:10.1038/ncomms1340

  15. Mukherjee S, Ghosh RN, Maxfield FR (1997) Endocytosis. Physiol Rev 77:759–803

    CAS  Google Scholar 

  16. Overly CC, Lee KD, Berthiaumet E, Hollenbeck PJ (1995) Quantitative measurement of intraorganelle pH in the endosomal-lysosomal pathway in neurons by using ratiometric imaging with pyranine. Proc Natl Acad Sci USA 92:3156–3160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sandhya P. Koushika for inputs on experiments, Souvik Modi for technical input, Central Imaging Facility at NCBS and the Caenorhabditis Genetics Center (funded by NIH-NCRR) for nematode strains, and DBT and the Nanoscience and Technology Initiative of DST for funding. S.S. acknowledges the CSIR, and Y.K. acknowledges the Innovative Young Biotechnologist Award and Wellcome Trust–DBT India Alliance for fellowships.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Surana, S., Krishnan, Y. (2013). A Method to Map Spatiotemporal pH Changes in a Multicellular Living Organism Using a DNA Nanosensor. In: Weissig, V., Elbayoumi, T., Olsen, M. (eds) Cellular and Subcellular Nanotechnology. Methods in Molecular Biology, vol 991. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-336-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-336-7_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-335-0

  • Online ISBN: 978-1-62703-336-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics