Skip to main content

Single-Cell Nanosurgery

  • Protocol
  • First Online:
Cellular and Subcellular Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 991))

Abstract

This chapter explains the steps necessary to perform laser surgery upon single adherent mammalian cells, where individual organelles are extracted from the cells by optical tweezers and the cells are monitored post-surgery to check their viability. Single-cell laser nanosurgery is used in an increasing range of methodologies because it offers great flexibility. Its main advantages are (a) there is not any physical contact with the cells so they remain in a sterile environment, (b) high spatial selectivity so that single organelles can be extracted from specific areas of individual cells, (c) the method can be conducted in the cell’s native media, and (d) in comparison to other techniques that target single cells, such as micromanipulators, laser nanosurgery has a comparatively high throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shelby JP, Edgar JS, Chiu DT (2005) Monitoring cell survival after extraction of a single subcellular organelle using optical trapping and pulsed-nitrogen laser ablation. Photochem Photobiol 81(4):994–1001

    Article  CAS  Google Scholar 

  2. Niemz MH (2004) Laser-tissue interactions. Springer, Heidelberg

    Google Scholar 

  3. Zeigler MB, Chiu DT (2009) Laser selection significantly affects cell viability following single-cell nanosurgery. Photochem Photobiol 85(5):1218–1224

    Article  CAS  Google Scholar 

  4. Allen PB, Sgro AE, Chao DL et al (2008) Single-synapse ablation and long-term imaging in live C. elegans. J Neurosci 173(1):20–26

    Google Scholar 

  5. Chung SH, Mazur E (2009) Femtosecond laser ablation of neurons in C. elegans for behavioral studies. Appl Phys A 96:335–341

    Article  CAS  Google Scholar 

  6. Chang TN, Keshishian H (1996) Laser ablation of drosophilia embryonic motoneurons causes ectopic innervation of target muscle fibers. J Neurosci 16(18):5715–5726

    CAS  Google Scholar 

  7. Kohli V, Elezzabi AY (2008) Laser surgery of zebrafish (Danio rerio) embryos using femtosecond laser pulses: optimal parameters for exogenous material delivery, and the laser’s effect on short- and long-term development. BMC Biotechnol. doi:10.1186/1472-6750-8-7

  8. Heilmann I, Pidkowich MS (2004) Switching desaturase enzyme specificity by alternate subcellular targeting. Proc Natl Acad Sci USA 101(28):10266–10271

    Article  CAS  Google Scholar 

  9. Stevenson DJ, Gunn-Moore FJ, Campbell P et al (2010) Single cell optical transfection. J R Soc Interface 7(47):863–871

    Article  CAS  Google Scholar 

  10. Zhang H, Liu KK (2008) Optical tweezers for single cells. J R Soc Interface 5(24):671–690

    Article  CAS  Google Scholar 

  11. Berns MW, Aist J, Edwards J et al (1981) Laser microsurgery in cell and developmental biology. Science 13(4507):505–513

    Article  Google Scholar 

  12. Block SM (1998) Construction of optical tweezers. In: LS David, DG Robert, AL Leslie (ed) Cells: a laboratory manual, vol 2. Cold Spring Harbor Laboratory Press, Woodbury

    Google Scholar 

  13. Lee WM, Reece PJ, Marchington RF et al (2007) Construction and calibration of an optical trap on a fluorescence optical microscope. Nat Protoc 2(12):3226–3238

    Article  CAS  Google Scholar 

  14. Jeffries GDM, Edgar JS, Zhao Y et al (2007) Using polarization-shaped optical vortex traps for single-cell nanosurgery. Nano Lett 7(2):415–420

    Article  CAS  Google Scholar 

  15. Curtis JE, Koss BA, Grier DG (2002) Dynamic holographic optical tweezers. Opt Commun 207:169–175

    Article  CAS  Google Scholar 

  16. Martín-Badosa E, Montes-Usategui M, Carnicer A et al (2007) Design strategies for optimizing holographic optical tweezers set-ups. J Opt A Pure Appl Opt 9:S267–S277

    Article  Google Scholar 

  17. Mejean CO, Schaefer AW, Millman EA et al (2009) Multiplexed force measurements on live cells with holographic optical tweezers. Opt Express 17(8):6209–6217

    Article  CAS  Google Scholar 

  18. Rohrbach A, Tischer C, Neumayer D et al (2004) Trapping and tracking a local probe with a photonic force microscope. Rev Sci Instrum 75(6):2197–2210

    Article  CAS  Google Scholar 

  19. Moffitt JR, Chemla YR, Smith SB et al (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228

    Article  CAS  Google Scholar 

  20. Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24(4):156–159

    Article  CAS  Google Scholar 

  21. Allen PB, Doepker BR, Chiu DT (2009) High-throughput capillary-electrophoresis analysis of the contents of a single mitochondria. Anal Chem 81(10):3784–3791

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to NIH (NS062725, NS052637, GM085485) and NSF (CHE0844688 and CHE0924320) for support of this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zeigler, M.B., Chiu, D.T. (2013). Single-Cell Nanosurgery. In: Weissig, V., Elbayoumi, T., Olsen, M. (eds) Cellular and Subcellular Nanotechnology. Methods in Molecular Biology, vol 991. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-336-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-336-7_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-335-0

  • Online ISBN: 978-1-62703-336-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics