Skip to main content

Solution Nuclear Magnetic Resonance Spectroscopy

  • Protocol
  • First Online:
Electron Crystallography of Soluble and Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 955))

Abstract

Solution nuclear magnetic resonance (NMR) spectroscopy has come a long way in characterizing the structure and function of biological molecules since the first one-dimensional spectrum of protein was recorded about 30 years ago. To date (September 1, 2012), there are 9,521 solution NMR structures in the Protein Data Bank, compared to 74,009 determined by crystallographic methods. Unlike X-ray and electron microscopy (EM) methods, which are based on the concepts of Fourier optics and image reconstruction, structure determination by NMR involves measuring structural restraints and finding structural solutions that satisfy the restraints. Although the NMR approach is much less direct in a physical sense, it has proven itself over the years to be capable of de novo structure determination at high precision. Moreover, the method is highly versatile and can be used in a variety of ways for addressing mechanistic questions. NMR measurements of protein internal dynamics and protein–protein or protein–ligand interaction are directly relevant to function in vivo because the molecules are often in physiological buffer conditions. The method can also be applied to investigate protein-folding intermediates, conformational changes, as well as intrinsically unfolded proteins. Recently, along with X-ray and EM, solution NMR has entered a state of rapid growth for structural studies of membrane proteins, already demonstrating its feasibility in de novo structure determination of membrane-embedded ion channels and receptors. As the hardware advances rapidly, especially in cryogenic probes that have much higher sensitivity, the sample concentration required for solution NMR investigation is decreasing, hopefully soon to a concentration level at which nonspecific protein aggregation is no longer an issue. After three decades of improvement in spectrometer technology, NMR pulse experiments, isotope labeling schemes, and structure determination software, we believe that solution NMR will truly enter the production phase in the next decade to answer biological questions of high impact, and to become more versatile than ever in complementing X-ray and EM in investigating protein structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bloch F, Hansen WW, Packard M (1946) The nuclear induction experiment. Phys Rev 70:474–485

    Article  CAS  Google Scholar 

  2. Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38

    Article  CAS  Google Scholar 

  3. Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94(23):12366–12371

    Article  PubMed  CAS  Google Scholar 

  4. Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced 1H-13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428

    Article  PubMed  CAS  Google Scholar 

  5. Meyer B, Peters T (2003) NMR Spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed Engl 42(8):864–890

    Article  PubMed  CAS  Google Scholar 

  6. Battiste JL, Pestova TV, Hellen CU, Wagner G (2000) The eIF1A solution structure reveals a large RNA-binding surface important for scanning function. Mol Cell 5(1):109–119

    Article  PubMed  CAS  Google Scholar 

  7. Gross JD et al (2003) Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell 115(6):739–750

    Article  PubMed  CAS  Google Scholar 

  8. Marintchev A, Frueh D, Wagner G (2007) NMR methods for studying protein-protein interactions involved in translation initiation. Methods Enzymol 430:283–331

    Article  PubMed  CAS  Google Scholar 

  9. Babu YS, Bugg CE, Cook WJ (1988) Structure of calmodulin refined at 2.2 A resolution. J Mol Biol 204(1):191–204

    Article  PubMed  CAS  Google Scholar 

  10. Ikura M et al (1992) Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256(5057):632–638

    Article  PubMed  CAS  Google Scholar 

  11. Barbato G, Ikura M, Kay LE, Pastor RW, Bax A (1992) Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry 31(23):5269–5278

    Article  PubMed  CAS  Google Scholar 

  12. Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622

    Article  PubMed  CAS  Google Scholar 

  13. Loria JP, Rance M, Palmer AG 3rd (1999) A relaxation-compensated carr-purcell-meiboom-gill sequence for characterizing chemical exchange by NMR spectroscopy. J Am Chem Soc 121(10):2331–2332

    Article  CAS  Google Scholar 

  14. Palmer AG 3rd, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 339:204–238

    Article  PubMed  CAS  Google Scholar 

  15. Eisenmesser EZ, Bosco DA, Akke M, Kern D (2002) Enzyme dynamics during catalysis. Science 295(5559):1520–1523

    Article  PubMed  CAS  Google Scholar 

  16. Eisenmesser EZ et al (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438(7064):117–121

    Article  PubMed  CAS  Google Scholar 

  17. Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451(7178):591–595

    Article  PubMed  CAS  Google Scholar 

  18. Overhauser AW (1953) Polarization of nuclei in metals. Phys Rev 91(2):476

    Google Scholar 

  19. Carver TR, Slitcher CP (1953) Polarization of nuclear spins in metal. Phys Rev 92:212

    Article  CAS  Google Scholar 

  20. Becerra LR, Gerfen GJ, Temkin RJ, Singel DJ, Griffin RG (1993) Dynamic nuclear polarization with a cyclotron resonance maser at 5 T. Phys Rev Lett 71(21):3561–3564

    Article  PubMed  CAS  Google Scholar 

  21. Hall DA et al (1997) Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. Science 276(5314):930–932

    Article  PubMed  CAS  Google Scholar 

  22. Sounier R, Blanchard L, Wu Z, Boisbouvier J (2007) High-accuracy distance measurement between remote methyls in specifically protonated proteins. J Am Chem Soc 129(3):472–473

    Article  PubMed  CAS  Google Scholar 

  23. Zuiderweg ER, Fesik SW (1989) Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry 28(6):2387–2391

    Article  PubMed  CAS  Google Scholar 

  24. Kay LE, Clore GM, Bax A, Gronenborn AM (1990) 4-Dimensional heteronuclear triple-resonance NMR-spectroscopy of interleukin-1-beta in solution. Science 249(4967):411–414

    Article  PubMed  CAS  Google Scholar 

  25. Tugarinov V, Choy WY, Orekhov VY, Kay LE (2005) Solution NMR-derived global folded of a monomeric 82-kDA enzyme. Proc Natl Acad Sci USA 102(3):622–627

    Article  PubMed  CAS  Google Scholar 

  26. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13(3):289–302

    Article  PubMed  CAS  Google Scholar 

  27. Bowers PM, Strauss CE, Baker D (2000) De novo protein structure determination using sparse NMR data. J Biomol NMR 18(4):311–318

    Article  PubMed  CAS  Google Scholar 

  28. Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci USA 104(23):9615–9620

    Article  PubMed  CAS  Google Scholar 

  29. Gong H, Shen Y, Rose GD (2007) Building native protein conformation from NMR backbone chemical shifts using Monte Carlo fragment assembly. Protein Sci 16(8):1515–1521

    Article  PubMed  CAS  Google Scholar 

  30. Spera S, Bax A (1991) An empirical correlation between protein backbone conformation and Ca and Cb chemical shifts. J Am Chem Soc 113:5490–5492

    Article  CAS  Google Scholar 

  31. Wishart DS, Sykes BD (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4(2):171–180

    Article  PubMed  CAS  Google Scholar 

  32. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44(4):213–223

    Article  PubMed  CAS  Google Scholar 

  33. Cheung MS, Maguire ML, Stevens TJ, Broadhurst RW (2010) DANGLE: a Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure. J Magn Reson 202(2):223–233

    Article  PubMed  CAS  Google Scholar 

  34. Bax A et al (1994) Measurement of homo- and heteronuclear J couplings from quantitative J correlation. Methods Enzymol 239:79–105

    Article  PubMed  CAS  Google Scholar 

  35. Deber CM, Torchia DA, Blout ER (1971) Cyclic peptides. I. Cyclo(tri-l-prolyl) and derivatives. Synthesis and molecular conformation from nuclear magnetic resonance. J Am Chem Soc 93(19):4893–4897

    Article  PubMed  CAS  Google Scholar 

  36. Demarco A, Llinas M, Wuthrich K (1978) Analysis of H-1-NMR Spectra of ferrichrome peptides. 2. Amide resonances. Biopolymers 17(3):637–650

    Article  CAS  Google Scholar 

  37. Vuister GW, Wang AC, Bax A (1993) Measurement of three-bond nitrogen-carbon J couplings in proteins uniformly enriched in nitrogen-15 and carbon-13. J Am Chem Soc 115(12):5334–5335

    Article  CAS  Google Scholar 

  38. Grzesiek S, Vuister GW, Bax A (1993) A simple and sensitive experiment for measurement of Jcc couplings between backbone carbonyl and methyl carbons in isotopically enriched proteins. J Biomol NMR 3(4):487–493

    Article  PubMed  CAS  Google Scholar 

  39. MacKenzie KR, Prestegard JH, Engelman DM (1996) Leucine side-chain rotamers in a glycophorin A transmembrane peptide as revealed by three-bond carbon-carbon couplings and 13C chemical shifts. J Biomol NMR 7(3):256–260

    Article  PubMed  CAS  Google Scholar 

  40. Hu J-S, Grzesiek S, Bax A (1997) Chi1 angle information from a simple two-dimensional NMR experiment which identifies trans 3JNCg couplings in isotopically enriched proteins. J Biomol NMR 9:323–328

    Article  PubMed  CAS  Google Scholar 

  41. Hu JS, Bax A (1997) Determination of phi and chi(1) angles in proteins from C-13-C-13 three-bond J couplings measured by three-dimensional heteronuclear NMR. How planar is the peptide bond? J Am Chem Soc 119(27):6360–6368

    Article  CAS  Google Scholar 

  42. Abragham A (1961) The principles of nuclear magnetism. Clarendon Press, Oxford, England

    Google Scholar 

  43. Saupe A, Englert G (1963) High-resolution nuclear magnetic resonance spectra of orientated molecules. Phys Rev Lett 11:462–464

    Article  CAS  Google Scholar 

  44. Tolman JR, Flanagan JM, Kennedy MA, Prestegard JH (1995) Nuclear magnetic dipole interactions in field-oriented proteins – information for structure determination in solution. Proc Natl Acad Sci USA 92(20):9279–9283

    Article  PubMed  CAS  Google Scholar 

  45. Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278(5340):1111–1114

    Article  PubMed  CAS  Google Scholar 

  46. Hansen MR, Mueller L, Pardi A (1998) Tunable alignment of macromolecules by fila­mentous phage yields dipolar coupling interactions. Nat Struct Biol 5(12):1065–1074

    Article  PubMed  CAS  Google Scholar 

  47. Clore GM, Starich MR, Gronenborn AM (1998) Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod-shaped viruses. J Am Chem Soc 120(40):10571–10572

    Article  CAS  Google Scholar 

  48. Prosser RS, Losonczi JA, Shiyanovskaya IV (1998) Use of a novel aqueous liquid crystalline medium for high-resolution NMR of macromolecules in solution. J Am Chem Soc 120(42):11010–11011

    Article  CAS  Google Scholar 

  49. Barrientos LG, Dolan C, Gronenborn AM (2000) Characterization of surfactant liquid crystal phases suitable for molecular alignment and measurement of dipolar couplings. J Biomol NMR 16(4):329–337

    Article  PubMed  CAS  Google Scholar 

  50. Ruckert M, Otting G (2000) Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J Am Chem Soc 122(32):7793–7797

    Article  Google Scholar 

  51. Tycko R, Blanco FJ, Ishii Y (2000) Alignment of biopolymers in strained gels: a new way to create detectable dipole-dipole couplings in high-resolution biomolecular NMR. J Am Chem Soc 122(38):9340–9341

    Article  CAS  Google Scholar 

  52. Sass HJ, Musco G, Stahl SJ, Wingfield PT, Grzesiek S (2000) Solution NMR of proteins within polyacrylamide gels: diffusional properties and residual alignment by mechanical stress or embedding of oriented purple membranes. J Biomol NMR 18(4):303–309

    Article  PubMed  CAS  Google Scholar 

  53. Shortle D, Ackerman MS (2001) Persistence of native-like topology in a denatured protein in 8 M urea. Science 293(5529):487–489

    Article  PubMed  CAS  Google Scholar 

  54. Chou JJ, Gaemers S, Howder B, Louis JM, Bax A (2001) A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles. J Biomol NMR 21(4):377–382

    Article  PubMed  CAS  Google Scholar 

  55. Chou JJ, Kaufman JD, Stahl SJ, Wingfield PT, Bax A (2002) Micelle-induced curvature in a water-insoluble HIV-1 Env peptide revealed by NMR dipolar coupling measurement in stretched polyacrylamide gel. J Am Chem Soc 124(11):2450–2451

    Article  PubMed  CAS  Google Scholar 

  56. Douglas SM, Chou JJ, Shih WM (2007) DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc Natl Acad Sci USA 104(16):6644–6648

    Article  PubMed  CAS  Google Scholar 

  57. Lorieau J, Yao L, Bax A (2008) Liquid crystalline phase of G-tetrad DNA for NMR study of detergent-solubilized proteins. J Am Chem Soc 130:7536–7537

    Article  PubMed  CAS  Google Scholar 

  58. Kontaxis G, Clore G, Bax A (2000) Evaluation of cross-correlation effects and measurement of one-bond couplings in proteins with short transverse relaxation times. J Magn Reson 143(1):184–196

    Article  PubMed  CAS  Google Scholar 

  59. Chou JJ, Delaglio F, Bax A (2000) Measurement of one-bond 15N-13C′ dipolar couplings in medium sized proteins. J Biomol NMR 18(2):101–105

    Article  PubMed  CAS  Google Scholar 

  60. Jaroniec CP, Ulmer TS, Bax A (2004) Quantitative J correlation methods for the accurate measurement of 13C′-13Calpha dipolar couplings in proteins. J Biomol NMR 30(2):181–194

    Article  PubMed  CAS  Google Scholar 

  61. Battiste JL, Wagner G (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39(18):5355–5365

    Article  PubMed  CAS  Google Scholar 

  62. Qin PZ et al (2007) Measuring nanometer distances in nucleic acids using a sequence-independent nitroxide probe. Nat Protoc 2(10):2354–2365

    Article  PubMed  CAS  Google Scholar 

  63. Williamson MP, Havel TF, Wüthrich K (1985) Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. J Mol Biol 182:295–315

    Article  PubMed  CAS  Google Scholar 

  64. Kaptein R, Zuiderweg ERP, Scheek RM, Boelens R, Vangunsteren WF (1985) A protein-structure from nuclear magnetic-resonance data – LAC repressor headpiece. J Mol Biol 182(1):179–182

    Article  PubMed  CAS  Google Scholar 

  65. Clore GM et al (1986) The 3-dimensional structure of alpha-1-purothionin in solution – combined use of nuclear-magnetic-resonance, distance geometry and restrained molecular-dynamics. EMBO J 5(10):2729–2735

    PubMed  CAS  Google Scholar 

  66. Clore GM, Brunger AT, Karplus M, Gronenborn AM (1986) Application of molecular-dynamics with interproton distance restraints to 3-dimensional protein-structure determination – a model study of crambin. J Mol Biol 191(3):523–551

    Article  PubMed  CAS  Google Scholar 

  67. Nilges M, Clore GM, Gronenborn AM (1988) Determination of 3-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett 229(2):317–324

    Article  PubMed  CAS  Google Scholar 

  68. Liu Y, Engelman DM, Gerstein M (2002) Genomic analysis of membrane protein families: abundance and conserved motifs. Genome Biol 3(10):research0054

    Article  PubMed  Google Scholar 

  69. Ulmschneider MB, Sansom MS (2001) Amino acid distributions in integral membrane protein structures. Biochim Biophys Acta 1512(1):1–14

    Article  PubMed  CAS  Google Scholar 

  70. Van Horn WD et al (2009) Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science 324(5935):1726–1729

    Article  PubMed  Google Scholar 

  71. Liang B, Bushweller JH, Tamm LK (2006) Site-directed parallel spin-labeling and paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR spectroscopy. J Am Chem Soc 128(13):4389–4397

    Article  PubMed  CAS  Google Scholar 

  72. Vold RR, Prosser RS (1996) Magnetically oriented phospholipid bilayered micelles for structural studies of polypeptides. Does the ideal bicelle exist? J Magn Reson B 113(3):267–271

    Article  CAS  Google Scholar 

  73. Bayburt TH, Sligar SG (2003) Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Sci 12(11):2476–2481

    Article  PubMed  CAS  Google Scholar 

  74. Raschle T et al (2009) Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J Am Chem Soc 131(49):17777–17779

    Article  PubMed  CAS  Google Scholar 

  75. Gardner KH, Kay LE (1998) The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct 27:357–406

    Article  PubMed  CAS  Google Scholar 

  76. Tugarinov V, Kay LE (2004) An isotope labeling strategy for methyl TROSY spectroscopy. J Biomol NMR 28:165–172

    Article  PubMed  CAS  Google Scholar 

  77. LeMaster DM, Richards FM (1988) NMR sequetial assignment of E. coli thioredoxin utilizing random fractional deuteration. Biochemistry 27:142–150

    Article  PubMed  CAS  Google Scholar 

  78. Tugarinov V, Kanelis V, Kay LE (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat Protoc 1(2):749–754

    Article  PubMed  CAS  Google Scholar 

  79. Tugarinov V, Muhandiram DR, Ayed A, Kay LE (2002) Four-dimensional NMR spectroscopy of a 723-residue protein: chemical shift assignments and secondary structure of malate synthase G. J Am Chem Soc 124:10025–10035

    Article  PubMed  CAS  Google Scholar 

  80. Gans P et al (2010) Stereospecific isotopic labeling of methyl groups for NMR spectroscopic studies of high-molecular-weight proteins. Angew Chem Int Ed Engl 49(11):1958–1962

    Article  PubMed  CAS  Google Scholar 

  81. Fischer M et al (2007) Synthesis of a C-13-methyl-group-labeled methionine precursor as a useful tool for simplifying protein structural analysis by NMR spectroscopy. Chembiochem 8(6):610–612

    Article  PubMed  CAS  Google Scholar 

  82. Gelis I et al (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131(4):756–769

    Article  PubMed  CAS  Google Scholar 

  83. Isaacson RL et al (2007) A new labelling method for methyl transverse relaxation-optimized spectroscopy NMR spectra of Alanine residues. J Am Chem Soc 129(50):15428–15429

    Article  PubMed  CAS  Google Scholar 

  84. Ayala I, Sounier R, Use N, Gans P, Boisbouvier J (2009) An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein. J Biomol NMR 43(2):111–119

    Article  PubMed  CAS  Google Scholar 

  85. LeMaster DM, Kushlan DM (1996) Dynamical mapping of E. coli thioredoxin via C-13 NMR relaxation analysis. J Am Chem Soc 118(39):9255–9264

    Article  Google Scholar 

  86. Takeuchi K, Sun ZYJ, Wagner G (2008) Alternate C-13-C-12 labeling for complete mainchain resonance assignments using C alpha direct-detection with applicability toward fast relaxing protein systems. J Am Chem Soc 130(51):17210–17211

    Article  PubMed  CAS  Google Scholar 

  87. Kainosho M et al (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57

    Article  PubMed  CAS  Google Scholar 

  88. Skrisovska L, Schubert M, Allain FHT (2010) Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins. J Biomol NMR 46(1):51–65

    Article  PubMed  CAS  Google Scholar 

  89. Camarero JA et al (2002) Autoregulation of a bacterial sigma factor explored by using segmental isotopic labeling and NMR. Proc Natl Acad Sci USA 99(13):8536–8541

    Article  PubMed  CAS  Google Scholar 

  90. Skrisovska L, Allain FHT (2008) Improved segmental isotope labeling methods for the NMR study of multidomain or large proteins: application to the RRMs of Npl3p and hnRNP L. J Mol Biol 375(1):151–164

    Article  PubMed  CAS  Google Scholar 

  91. Vitali F et al (2006) Structure of the two most C-terminal RNA recognition motifs of PTB using segmental isotope labeling. EMBO J 25(1):150–162

    Article  PubMed  CAS  Google Scholar 

  92. Xu R, Ayers B, Cowburn D, Muir TW (1999) Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc Natl Acad Sci USA 96(2):388–393

    Article  PubMed  CAS  Google Scholar 

  93. Muralidharan V, Muir TW (2006) Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat Methods 3(6):429–438

    Article  PubMed  CAS  Google Scholar 

  94. Xu MQ, Evans TC (2005) Recent advances in protein splicing: manipulating proteins in vitro and in vivo. Curr Opin Biotechnol 16(4):440–446

    Article  PubMed  CAS  Google Scholar 

  95. Oxenoid K, Chou JJ (2005) The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc Natl Acad Sci USA 102(31):10870–10875

    Article  PubMed  CAS  Google Scholar 

  96. Jones TA, Thirup S (1986) Using known substructures in protein model-building and crystallography. EMBO J 5(4):819–822

    PubMed  CAS  Google Scholar 

  97. Delaglio F, Kontaxis G, Bax A (2000) Protein structure determination using molecular fragment replacement and NMR dipolar couplings. J Am Chem Soc 122(9):2142–2143

    Article  CAS  Google Scholar 

  98. Shen Y et al (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105(12):4685–4690

    Article  PubMed  CAS  Google Scholar 

  99. Raman S et al (2010) NMR structure determination for larger proteins using backbone-only data. Science 327(5968):1014–1018

    Article  PubMed  CAS  Google Scholar 

  100. Gonen T et al (2005) Lipid-protein interactions in double-layered two-dimensional AQPO crystals. Nature 438(7068):633–638

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Chou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chou, J.J., Sounier, R. (2013). Solution Nuclear Magnetic Resonance Spectroscopy. In: Schmidt-Krey, I., Cheng, Y. (eds) Electron Crystallography of Soluble and Membrane Proteins. Methods in Molecular Biology, vol 955. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-176-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-176-9_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-175-2

  • Online ISBN: 978-1-62703-176-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics