Skip to main content

Determination of Soluble and Membrane Protein Structures by X-Ray Crystallography

  • Protocol
  • First Online:
Electron Crystallography of Soluble and Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 955))

Abstract

X-ray crystallography is a technique used to determine the atomic-detail structure of a biological macromolecule. The method relies on the ability to generate a three-dimensional crystal of a highly purified protein or nucleic acid for diffraction by X-rays. The extent of scattering of X-rays by the crystal determines the accuracy of the resulting structural model. Unlike electrons, X-rays cannot be refocused after they have been scattered by their target. Thus, calculations are needed to reconstruct the image of the macromolecule that builds the crystal lattice. Tremendous advances over the past 60 years in recombinant expression and purification, crystal growth methods and equipment, X-ray sources, computer processing power, programs, and graphics have taken X-ray crystallography from a highly specialized field to one increasingly accessible to researchers in the biomedical sciences. In this chapter, we review the major concepts of macromolecular X-ray crystallography, focusing mainly on techniques for crystallizing soluble and membrane proteins, and provide a protocol for the crystallization of lysozyme as a model for the crystallization of other proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perutz M (1985) Early days of protein crystallography. Methods Enzymol 114:3–18

    Article  PubMed  CAS  Google Scholar 

  2. Ducruix A, Giege R (1999) Crystallization of nucleic acids and proteins. Oxford University Press, New York

    Google Scholar 

  3. Hendrickson WA (2000) Synchrotron crystallography. Trends Biochem Sci 25:637–643

    Article  PubMed  CAS  Google Scholar 

  4. Sweet RM (1998) The technology that enables synchrotron structural biology. Nat Struct Biol 5:654–656

    Article  PubMed  CAS  Google Scholar 

  5. McPhillips TM, McPhillips SE, Chiu HJ, Cohen AE, Deacon AM, Ellis PJ, Garman E, Gonzalez A, Sauter NK, Phizackerley RP, Soltis SM, Kuhn P (2002) Blu-Ice and the distributed control system: software for data aquisition and instrument control at macromolecular crystrallography beamlines. J Synchrotron Radiat 9:401–406

    Article  PubMed  CAS  Google Scholar 

  6. Burzlaff, H., and Zimmermann, H. (2006) Bases, lattices, Bravais lattices and other classifications, International Tables for Crystallography Vol. A. Chapter 9.1, pp 742–749

    Google Scholar 

  7. Newman J, Xu J, Willis MC (2007) Initial evaluations of the reproducibility of vapordiffusion crystallization. Acta Cryst D63:826–832

    CAS  Google Scholar 

  8. Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33:491–497

    Article  PubMed  CAS  Google Scholar 

  9. Chayen NE (1998) Comparative studies of protein crystallization by vapour-diffusion and microbatch techniques. Acta Cryst D54:8–15

    CAS  Google Scholar 

  10. Hansen CL, Skordalakes E, Berger JM, Quake SR (2002) A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc Natl Acad Sci U S A 99:16531–16536

    Article  PubMed  CAS  Google Scholar 

  11. Baldock P, Mils V, Stewart PS (1996) J Cryst Growth 168:170

    Article  CAS  Google Scholar 

  12. Carter J, Charles W (1990) Efficient factorial designs and the analysis of macromolecular crystal growth conditions. Methods 1:12–24

    Article  CAS  Google Scholar 

  13. Rupp B (2004) Protein isoelectric point as a predictor for increased crystallization screening efficiency. Bioinformatics 20:2162–2168

    Article  PubMed  Google Scholar 

  14. Cudney R, Patel S, Weisgraber K, Newhouse Y, McPherson A (1994) Screening and optimization strategies for macromolecular crystal growth. Acta Cryst D50:414–423

    CAS  Google Scholar 

  15. Prater BD, Tuller SC, Wilson LJ (1999) Simplex optimization of protein crystallization conditions. J Cryst Growth 196:674–684

    Article  CAS  Google Scholar 

  16. D’Arcy A, Mac Sweeney A, Haber A (2003) Using natural seeding material to generate nucleation in protein crystallization experiments. Acta Cryst D59:1343–1346

    Google Scholar 

  17. Bergfors T (2003) Seeds to crystals. J Struct Biol 142:66–76

    Article  PubMed  CAS  Google Scholar 

  18. Baker M (2010) Structural biology: crystal-clear images. Nature 465:824–825

    Article  PubMed  Google Scholar 

  19. Garman EF, Nave C (2009) Radiation damage in protein crystals examined under various conditions by different methods. J Synchrotron Radiat 16:129–132

    Article  PubMed  CAS  Google Scholar 

  20. Petsko GA (1975) Protein crystallography at sub-zero temperatures: cryo-protective mother liquors for protein crystals. J Mol Biol 96:381–392

    Article  PubMed  CAS  Google Scholar 

  21. Carugo O, Argos P (1997) Protein-protein crystal-packing contacts. Protein Sci 6:2261–2263

    Article  PubMed  CAS  Google Scholar 

  22. Edwards AM, Arrowsmith CH, Christendat D, Dharamsi A, Friesen JD, Greenblat JF, Vegadi M (2000) Protein production: feeding the crystallographers and NMR spectroscopists. Nat Struct Mol Biol 7:970–972

    Article  CAS  Google Scholar 

  23. Ke A, Doudna JA (2004) Crystallization of RNA and RNA-protein complexes. Methods 34:408–414

    Article  PubMed  CAS  Google Scholar 

  24. Wernimont A, Edwards A (2009) In situ proteolysis to generate crystals for structure determination: an update. PLoS One 4:e5094

    Article  PubMed  Google Scholar 

  25. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  PubMed  CAS  Google Scholar 

  26. Wiener MC (2004) A pedestrian guide to membrane protein crystallization. Methods 34:364–372

    Article  PubMed  CAS  Google Scholar 

  27. Loll PJ (2003) Membrane protein structural biology: the high throughput challenge. J Struct Biol 142:144–153

    Article  PubMed  CAS  Google Scholar 

  28. Warke A, Momany C (2007) Addressing the protein crystallization bottleneck by cocrystallization. Cryst Growth Des 7:2219–2225

    Article  CAS  Google Scholar 

  29. Zhou YM-C, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 414:43–48

    Article  PubMed  CAS  Google Scholar 

  30. Ostermeier C, Essen LO, Michel H (1995) Crystals of an antibody Fv fragment against an integral membrane protein diffracting to 1.28 A resolution. Proteins 21:74–77

    Article  PubMed  CAS  Google Scholar 

  31. Pai JC, Culver JA, Drury JE, Lieberman RL, Maynard JA (2011) Peptide binding antibody fragment (scFv) chaperones for cocrystallization. Prot Engin Des Sel 24:419–428

    Google Scholar 

  32. Pflugrath JW (1999) The finer things in X-ray diffraction data collection. Acta Cryst D55:1718–1725

    CAS  Google Scholar 

  33. Otwinowski Z, Minor W (1997) Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  34. Brunger AT (1997) Free R value: cross-validation in crystallography. Methods Enzymol 277:366–396

    Article  PubMed  CAS  Google Scholar 

  35. Rupp B (2010) Biomolecular crystallography. Garland Science, New York

    Google Scholar 

  36. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122

    CAS  Google Scholar 

  37. Evans P, McCoy A (2008) An introduction to molecular replacement. Acta Cryst D64:1–10

    CAS  Google Scholar 

  38. Dodson E (2008) The befores and afters of molecular replacement. Acta Cryst D64:17–24

    CAS  Google Scholar 

  39. Rould MA, Carter WC Jr (2003) Isomorphous difference methods. Methods Enzymol 374:145–163

    Article  PubMed  CAS  Google Scholar 

  40. Rould MA (1997) Screening for heavy-atom derivatives and obtaining accurate isomorphous differences. Methods Enzymol 276:461–472

    Article  CAS  Google Scholar 

  41. Terwilliger T (2004) SOLVE and RESOLVE: automated structure solution, density modification, and model building. J Synchrotron Radiat 11:49–52

    Article  PubMed  CAS  Google Scholar 

  42. Collaborative Computational Project, Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Cryst D50:760–763

    Google Scholar 

  43. Ramagopal UA, Dauter M, Dauter Z (2003) Phasing on anomalous signal of sulfurs: what is the limit? Acta Cryst D59:1020–1027

    CAS  Google Scholar 

  44. Hendrickson WA, Horton JR, Lemaster DM (1990) Selenomethionyl proteins produced for analysis by Multiwavelength Anomalous Diffraction (Mad) - a vehicle for direct determination of 3-dimensional structure. EMBO J 9:1665–1672

    PubMed  CAS  Google Scholar 

  45. Sheng J, Huang Z (2008) Selenium derivatization of nucleic acids for phase and structure determination in nucleic acid X-ray crystallography. Int J Mol Sci 9:258–271

    Article  PubMed  Google Scholar 

  46. Blow DM (2003) How Bijvoet made the difference: the growing power of anomalous scattering. Methods Enzymol 374:3–22

    Article  PubMed  CAS  Google Scholar 

  47. Hendrickson WA, Ogata CM (1997) Phase determination from multiwavelength anomalous diffraction measurements. Methods Enzymol 276:494–523

    Article  CAS  Google Scholar 

  48. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Cryst D54:905–921

    CAS  Google Scholar 

  49. Kostrewa D (1997) Bulk solvent correction: practical application and effects in reciprocal and real space. CCP4 Newsletter Protein Crystallogr 34:9–22

    Google Scholar 

  50. Terwilliger TC (2002) Rapid automatic NCS identification using heavy-atom substructures. Acta Cryst D58:2213–2215

    CAS  Google Scholar 

  51. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Cryst D60:2126–2132

    CAS  Google Scholar 

  52. Langer G, Cohen SX, Lamzin VS, Perrakis A (2008) Automated macromolecular model biolding for X-ray crystallography using ARP/wARP version 7. Nat Protoc 2:1171–1179

    Article  Google Scholar 

  53. Engh RA, Huber R (1991) Accurate bond and angle parameters for x-ray protein structure refinement. Acta Cryst A47:392–400

    CAS  Google Scholar 

  54. Ramachandran GN, Ramakrishnan C, Saisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99

    Article  PubMed  CAS  Google Scholar 

  55. Ries-Krautt MM, Ducruix AF (1989) Relative effectiveness of various ions on the solubility and crystal growth of lysozyme. J Biol Chem 264:745–748

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants to RLL from NSF (CAREER award 0845445) and the American Federation for Aging Research. Diffraction data were collected at the Southeast Regional Collaborative Access Team (Ser-CAT) beamline 22-BM at the Advanced Photon Source, Argonne National Laboratory. Supporting institutions may be found at www.ser-cat.org/members.html. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. We acknowledge the feedback on lysozyme crystallization from undergraduate students enrolled in CHEM 4582, 4681, as well as visitors from Westlake High School. This manuscript is dedicated to the memory of biology teacher Ayesha Johnson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel L. Lieberman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lieberman, R.L., Peek, M.E., Watkins, J.D. (2013). Determination of Soluble and Membrane Protein Structures by X-Ray Crystallography. In: Schmidt-Krey, I., Cheng, Y. (eds) Electron Crystallography of Soluble and Membrane Proteins. Methods in Molecular Biology, vol 955. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-176-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-176-9_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-175-2

  • Online ISBN: 978-1-62703-176-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics