Skip to main content

Phasing Electron Diffraction Data by Molecular Replacement: Strategy for Structure Determination and Refinement

  • Protocol
  • First Online:
Electron Crystallography of Soluble and Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 955))

Abstract

Electron crystallography is arguably the only electron cryomicroscopy (cryo EM) technique able to deliver atomic resolution data (better then 3 Å) for membrane proteins embedded in a membrane. The progress in hardware improvements and sample preparation for diffraction analysis resulted in a number of recent examples where increasingly higher resolutions were achieved. Other chapters in this book detail the improvements in hardware and delve into the intricate art of sample preparation for microscopy and electron diffraction data collection and processing. In this chapter, we describe in detail the protocols for molecular replacement for electron diffraction studies. The use of a search model for phasing electron diffraction data essentially eliminates the need of acquiring image data rendering it immune to aberrations from drift and charging effects that effectively lower the attainable resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32

    Article  PubMed  CAS  Google Scholar 

  2. Fujiyoshi Y (1998) The structural study of membrane proteins by electron crystallography. Adv Biophys 35:25–80

    Article  PubMed  CAS  Google Scholar 

  3. Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison SC, Walz T (2005) Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438:633–638

    Article  PubMed  CAS  Google Scholar 

  4. Hite RK, Li Z, Walz T (2010) Principles of membrane protein interactions with annular lipids deduced from aquaporin-0 2D crystals. EMBO J 29:1652–1658

    Article  PubMed  CAS  Google Scholar 

  5. Mitsuoka K, Hirai T, Murata K, Miyazawa A, Kidera A, Kimura Y, Fujiyoshi Y (1999) The structure of bacteriorhodopsin at 3.0 A resolution based on electron crystallography: implication of the charge distribution. J Mol Biol 286:861–882

    Article  PubMed  CAS  Google Scholar 

  6. Tani K, Mitsuma T, Hiroaki Y, Kamegawa A, Nishikawa K, Tanimura Y, Fujiyoshi Y (2009) Mechanism of aquaporin-4’s fast and highly selective water conduction and proton exclusion. J Mol Biol 389:694–706

    Article  PubMed  CAS  Google Scholar 

  7. Crowther RA, Henderson R, Smith JM (1996) MRC image processing programs. J Struct Biol 116:9–16

    Article  PubMed  CAS  Google Scholar 

  8. Gipson B, Zeng X, Stahlberg H (2007) 2dx_merge: data management and merging for 2D crystal images. J Struct Biol 160:375–384

    Article  PubMed  CAS  Google Scholar 

  9. Philippsen A, Schenk AD, Signorell GA, Mariani V, Berneche S, Engel A (2007) Collaborative EM image processing with the IPLT image processing library and toolbox. J Struct Biol 157:28–37

    Article  PubMed  CAS  Google Scholar 

  10. Ceska TA, Henderson R (1990) Analysis of high-resolution electron diffraction patterns from purple membrane labelled with heavy-atoms. J Mol Biol 213:539–560

    Article  PubMed  CAS  Google Scholar 

  11. Gonen T, Sliz P, Kistler J, Cheng Y, Walz T (2004) Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429:193–197

    Article  PubMed  CAS  Google Scholar 

  12. Navaza J (1994) Amore—an automated package for molecular replacement. Acta Crystallogr A50:157–163

    CAS  Google Scholar 

  13. Trapani S, Navaza J (2008) AMoRe: classical and modern. Acta Crystallogr D64:11–16

    CAS  Google Scholar 

  14. Vagin A, Teplyakov A (1997) MOLREP: an automated program for molecular replacement. J Appl Crystallogr 30:1022–1025

    Article  CAS  Google Scholar 

  15. Vagin A, Teplyakov A (2010) Molecular replacement with MOLREP. Acta Crystallogr D66:22–25

    CAS  Google Scholar 

  16. McCoy AJ (2007) Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr D63:32–41

    CAS  Google Scholar 

  17. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  PubMed  CAS  Google Scholar 

  18. Collaborative Computational Project, Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D50:760–763

    Google Scholar 

  19. Brunger AT (2007) Version 1.2 of the crystallography and NMR system. Nat Protoc 2:2728–2733

    Article  PubMed  CAS  Google Scholar 

  20. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D54:905–921

    CAS  Google Scholar 

  21. Potterton E, Briggs P, Turkenburg M, Dodson E (2003) A graphical user interface to the CCP4 program suite. Acta Crystallogr D59:1131–1137

    CAS  Google Scholar 

  22. Stein N (2008) CHAINSAW: a program for mutating pdb files used as templates in molecular replacement. J Appl Crystallogr 41:641–643

    Article  CAS  Google Scholar 

  23. Vagin A, Teplyakov A (2000) An approach to multi-copy search in molecular replacement. Acta Crystallogr D56:1622–1624

    CAS  Google Scholar 

  24. Tong L (2001) How to take advantage of non-crystallographic symmetry in molecular replacement: ‘locked’ rotation and translation functions. Acta Crystallogr D57:1383–1389

    CAS  Google Scholar 

  25. Tong L, Rossmann MG (1990) The locked rotation function. Acta Crystallogr A46:783–792

    CAS  Google Scholar 

  26. Tong LA (1996) The locked translation function and other applications of a Patterson correlation function. Acta Crystallogr A52:476–479

    CAS  Google Scholar 

  27. Long F, Vagin AA, Young P, Murshudov GN (2008) BALBES: a molecular-replacement pipeline. Acta Crystallogr D64:125–132

    CAS  Google Scholar 

  28. Keegan RM, Winn MD (2008) MrBUMP: an automated pipeline for molecular replacement. Acta Crystallogr D64:119–124

    CAS  Google Scholar 

  29. Sui HX, Han BG, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878

    Article  PubMed  CAS  Google Scholar 

  30. Vaguine AA, Richelle J, Wodak SJ (1999) SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr D55:191–205

    CAS  Google Scholar 

  31. French S, Wilson K (1978) Treatment of negative intensity observations. Acta Crystallogr A34:517–525

    CAS  Google Scholar 

  32. Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33:491–497

    Article  PubMed  CAS  Google Scholar 

  33. Kantardjieff KA, Rupp B (2003) Matthews coefficient probabilities: improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein Sci 12:1865–1871

    Article  PubMed  CAS  Google Scholar 

  34. Teneyck LF (1973) Crystallographic fast Fourier-transforms. Acta Crystallogr A29:183–191

    Google Scholar 

  35. Lebedev AA, Vagin AA, Murshudov GN (2008) Model preparation in MOLREP and examples of model improvement using X-ray data. Acta Crystallogr D64:33–39

    CAS  Google Scholar 

  36. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D60:2126–2132

    CAS  Google Scholar 

  37. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D66:486–501

    CAS  Google Scholar 

  38. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D53:240–255

    CAS  Google Scholar 

  39. Cohen SX, Ben Jelloul M, Long F, Vagin A, Knipscheer P, Lebbink J, Sixma TK, Lamzin VS, Murshudov GN, Perrakis A (2008) ARP/wARP and molecular replacement: the next generation. Acta Crystallogr D64:49–60

    CAS  Google Scholar 

  40. Perrakis A, Harkiolaki M, Wilson KS, Lamzin VS (2001) ARP/wARP and molecular replacement. Acta Crystallogr D57:1445–1450

    CAS  Google Scholar 

  41. Terwilliger TC (2003) Improving macromolecular atomic models at moderate resolution by automated iterative model building, statistical density modification and refinement. Acta Crystallogr D59:1174–1182

    CAS  Google Scholar 

  42. Terwilliger TC (2003) Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallogr D59:38–44

    CAS  Google Scholar 

  43. Terwilliger TC (2003) Automated side-chain model building and sequence assignment by template matching. Acta Crystallogr D59:45–49

    CAS  Google Scholar 

Download references

Acknowledgments

Research in the Gonen laboratory is supported by the American Diabetes Association Award # 1-09-CD-05 and by the National Institutes of Health R01GM079233 and U54GM094598 as well as the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamir Gonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wisedchaisri, G., Gonen, T. (2013). Phasing Electron Diffraction Data by Molecular Replacement: Strategy for Structure Determination and Refinement. In: Schmidt-Krey, I., Cheng, Y. (eds) Electron Crystallography of Soluble and Membrane Proteins. Methods in Molecular Biology, vol 955. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-176-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-176-9_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-175-2

  • Online ISBN: 978-1-62703-176-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics