Skip to main content

Isolation, Enumeration, and Expansion of Human Mesenchymal Stem Cells in Culture

  • Protocol
  • First Online:
Basic Cell Culture Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 946))

Abstract

Human bone marrow (BM) contains a population of non-hematopoietic stem cells also termed stromal cells, mesenchymal cells or multipotent mesenchymal stromal cells (MSCs). These cells have unique stem cell-like properties including their ability to self-renew, differentiate into multiple tissue types, and modulate immune cell responses through paracrine effects. These properties have positioned mesenchymal cells as biological agents in clinical trials for various diseases since the 1990s. Mesenchymal cells have been isolated from various tissues and cultured using various media and methods resulting in a lack of standardization in culture methods for these cells. Consequently, cells cultured in different laboratories exhibit different characteristics of MSC-like cells. This chapter outlines protocols for optimal isolation, enumeration, and expansion of human MSCs from BM in fetal bovine serum (FBS)-containing medium, as well as in xeno-free medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294

    Article  PubMed  CAS  Google Scholar 

  2. Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4:415–428

    Article  PubMed  CAS  Google Scholar 

  3. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143147

    Article  Google Scholar 

  4. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242

    Article  PubMed  CAS  Google Scholar 

  5. Debari C, Dell’Accio F, Tylazanowski P et al (2001) Multipotent mesenchymal stem cells form adult human synovial membrane. Arthritis Rheum 44:1928–1942

    Article  CAS  Google Scholar 

  6. Kuznetsov SA, Mankani MH, Gronthos S et al (2001) Circulating skeletal stem cells. J Cell Biol 153:113–114

    Article  Google Scholar 

  7. Tondreau T, Meuleman N, Delforge A et al (2005) Mesenchymal stem cells derived from CD133 positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells 23:1105–1112

    Article  PubMed  CAS  Google Scholar 

  8. Roberts IA, Campagnoli IA, Kumar S et al (2001) Identification of mesenchymal stem/progenitor cells in human first trimester fetal blood, liver and bone marrow. Blood 98:2396–2402

    Article  PubMed  Google Scholar 

  9. Int’l Anker PS, Scherjon SA, Kleiburg-van der Keur C et al (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102:1548–1549

    Article  Google Scholar 

  10. Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  PubMed  CAS  Google Scholar 

  11. Crisan M, Chen CW, Corselli M, Andriolo G, Lazzari L, Péault B (2009) Perivascular multipotent progenitor cells in human organs. Ann N Y Acad Sci 1176:118–123

    Article  PubMed  CAS  Google Scholar 

  12. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403

    PubMed  CAS  Google Scholar 

  13. Friedenstein AJ (1980) Stromal mechanisms of bone marrow: cloning in vitro and transplantation in vivo. Haematol Blood Transfus 25:19–29

    PubMed  CAS  Google Scholar 

  14. Clarke E, McCann SR (1989) Age dependent in vitro stromal growth. Bone Marrow Transplant 4:596–597

    PubMed  CAS  Google Scholar 

  15. Gronthos S, Graves SE, Ohta S, Simmons PJ (1994) The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood 84:4164–4173

    PubMed  CAS  Google Scholar 

  16. Sekiya I, Vuoristo JT, Larson BL, Prockop DJ (2002) In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci U S A 99:4397–4402

    Article  PubMed  CAS  Google Scholar 

  17. Russell KC, Phinney DG, Lacey MR, Barrilleaux BL, Meyertholen KE, O’Connor KC (2010) In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells 28:788–798

    Article  PubMed  CAS  Google Scholar 

  18. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25:2896–2902

    Article  PubMed  Google Scholar 

  19. Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED (2006) Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 24:1054–1064

    Article  PubMed  CAS  Google Scholar 

  20. Tsuji H, Miyoshi S, Ikegami Y, Hida N, Asada H, Togashi I, Suzuki J, Satake M, Nakamizo H, Tanaka M, Mori T, Segawa K, Nishiyama N, Inoue J, Makino H, Miyado K, Ogawa S, Yoshimura Y, Umezawa A (2010) Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circ Res 106:1613–1623

    Article  PubMed  CAS  Google Scholar 

  21. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WWK, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313

    Article  PubMed  CAS  Google Scholar 

  22. Lazarus HM, Koc ON, Devine SM, Curtin P, Maziarz RT, Holland HK, Shpall EJ, McCarthy P, Atkinson K, Cooper BW, Gerson SL, Laughlin MJ, Loberiza FR Jr, Moseley AB, Bacigalupo A (2005) Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 11:389–398

    Article  PubMed  Google Scholar 

  23. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringdén O, Group for Blood and Marrow Transplantation (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–86

    Article  PubMed  Google Scholar 

  24. Meuleman N, Tondreau T, Delforge A et al (2006) Human marrow mesenchymal stem cell culture: serum-free medium allows better expansion than classical alpha-MEM medium. Eur J Haematol 76:309–316

    Article  PubMed  Google Scholar 

  25. Kocaoemer A, Kern S, Kluter H, Bieback K (2007) Human AB-serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells 25:1270–1278

    Article  PubMed  CAS  Google Scholar 

  26. Schallmoser K, Bartmann C, Rohde E et al (2007) Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion 47:1436–1446

    Article  PubMed  CAS  Google Scholar 

  27. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–2625

    Article  PubMed  CAS  Google Scholar 

  28. D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Betty Hoac and Jacky Yau for technical assistance, Bert Wognum and Emer Clarke for technical advice, Terry Thomas and Allen Eaves for continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravenska Wagey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wagey, R., Short, B. (2013). Isolation, Enumeration, and Expansion of Human Mesenchymal Stem Cells in Culture. In: Helgason, C., Miller, C. (eds) Basic Cell Culture Protocols. Methods in Molecular Biology, vol 946. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-128-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-128-8_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-127-1

  • Online ISBN: 978-1-62703-128-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics