Skip to main content

Anemic Zebrafish Models of Cardiomyopathy

  • Protocol
  • First Online:
TRP Channels in Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Cardiomyopathy refers to the cardiac remodeling process in response to a variety of intrinsic and extrinsic stimuli that stress the heart. To discover novel therapeutic strategies for the disease, we are establishing and characterizing adult zebrafish models of cardiomyopathy. One of the models is tr265/tr265, a line that becomes anemic due to a mutation that ablates erythroid-specific Band 3 protein. Although Band 3 does not express in the heart, the chronic anemic stress induces profound cardiac enlargement and cardiomyopathy-like pathogenesis. Phenylhydrazine hydrochloride (PHZ)-induced anemia model has been established which enables application of anemia stress to any adult fish. In this chapter, we provide detailed information on generation of two anemic models in zebrafish; measurement of the anemia level; determination of enlarged hearts in either organ level or cellular level; and detection of cardiomyocyte hyperplasia, as well as survival rate recording. The protocols described here can be applied to other adult zebrafish models of cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 209.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad F, Seidman JG, Seidman CE (2005) The genetic basis for cardiac remodeling. Annu Rev Genomics Hum Genet 6:185–216

    Article  CAS  PubMed  Google Scholar 

  2. Hasenfuss G (1998) Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res 39:60–76

    Article  CAS  PubMed  Google Scholar 

  3. Molkentin JD, Robbins J (2008) With great power comes great responsibility: using mouse genetics to study cardiac hypertrophy and failure. J Mol Cell Cardiol 46:130–136

    Article  PubMed Central  PubMed  Google Scholar 

  4. Wolf MJ, Amrein H, Izatt JA, Choma MA, Reedy MC, Rockman HA (2006) Drosophila as a model for the identification of genes causing adult human heart disease. Proc Natl Acad Sci USA 103:1394–1399

    Article  CAS  PubMed  Google Scholar 

  5. Chen JN, Haffter P, Odenthal J, Vogelsang E, Brand M, van Eeden FJ, Furutani-Seiki M, Granato M, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Nusslein-Volhard C (1996) Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development 123:293–302

    CAS  PubMed  Google Scholar 

  6. Stainier DY, Fouquet B, Chen JN, Warren KS, Weinstein BM, Meiler SE, Mohideen MA, Neuhauss SC, Solnica-Krezel L, Schier AF, Zwartkruis F, Stemple DL, Malicki J, Driever W, Fishman MC (1996) Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123:285–292

    CAS  PubMed  Google Scholar 

  7. Zon LI, Peterson RT (2005) In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4:35–44

    Article  CAS  PubMed  Google Scholar 

  8. Stainier DY (2001) Zebrafish genetics and vertebrate heart formation. Nat Rev Genet 2:39–48

    Article  CAS  PubMed  Google Scholar 

  9. Chico TJ, Ingham PW, Crossman DC (2008) Modeling cardiovascular disease in the zebrafish. Trends Cardiovasc Med 4:150–155

    Article  Google Scholar 

  10. Sun X, Hoage T, Bai P, Ding Y, Chen Z, Zhang R, Huang W, Jahangir A, Paw B, Li YG, Xu X (2009) Cardiac hypertrophy involves both myocyte hypertrophy and hyperplasia in anemic zebrafish. PLoS One 4:e6596

    Article  PubMed Central  PubMed  Google Scholar 

  11. Paw BH, Davidson AJ, Zhou Y, Li R, Pratt SJ, Lee C, Trede NS, Brownlie A, Donovan A, Liao EC, Ziai JM, Drejer AH, Guo W, Kim CH, Gwynn B, Peters LL, Chernova MN, Alper SL, Zapata A, Wickramasinghe SN, Lee MJ, Lux SE, Fritz A, Postlethwait JH, Zon LI (2003) Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency. Nat Genet 34:59–64

    Article  CAS  PubMed  Google Scholar 

  12. Ding Y, Sun X, Huang W, Hoage T, Redfield M, Kushwaha S, Sivasubbu S, Lin X, Ekker S, Xu X (2011) Haploinsufficiency of target of rapamycin attenuates cardiomyopathies in adult zebrafish. Circ Res 109:658–669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Simunek T, Sterba M, Popelova O, Adamcova M, Hrdina R, Gersl V (2009) Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep 61:154–171

    CAS  PubMed  Google Scholar 

  14. Christiansen S, Autschbach R (2006) Doxorubicin in experimental and clinical heart failure. Eur J Cardiothorac Surg 30:611–616

    Article  PubMed  Google Scholar 

  15. Yi X, Bekeredjian R, DeFilippis NJ, Siddiquee Z, Fernandez E, Shohet RV (2006) Transcriptional analysis of doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circ Physiol 290:H1098–H1102

    Article  CAS  PubMed  Google Scholar 

  16. Robert J (2007) Preclinical assessment of anthracycline cardiotoxicity in laboratory animals: predictiveness and pitfalls. Cell Biol Toxicol 23:27–37

    Article  CAS  PubMed  Google Scholar 

  17. Norman TD, Mc BR (1958) Cardiac hypertrophy in rats with phenylhydrazine anemia. Circ Res 6:765–770

    Article  CAS  PubMed  Google Scholar 

  18. Simonot DL, Farrell AP (2007) Cardiac remodelling in rainbow trout Oncorhynchus mykiss Walbaum in response to phenylhydrazine-induced anaemia. J Exp Biol 210:2574–2584

    Article  CAS  PubMed  Google Scholar 

  19. Danilova N, Sakamoto KM, Lin S (2008) Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. Blood 112:5228–5237

    Article  CAS  PubMed  Google Scholar 

  20. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Develop Dynam 203:253–350

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sun, X., Xu, X. (2012). Anemic Zebrafish Models of Cardiomyopathy. In: Szallasi, A., Bíró, T. (eds) TRP Channels in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-095-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-095-3_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-094-6

  • Online ISBN: 978-1-62703-095-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics