Skip to main content

TRPs to Cardiovascular Disease

  • Protocol
  • First Online:
TRP Channels in Drug Discovery

Abstract

Transient receptor potential (TRP) is a large superfamily of cation channels comprising 28 members in mammals. TRP channels are ubiquitously expressed in human tissues, including the cardiovascular system where they have been associated with a number of physiological functions, such as proliferation, contraction, and migration. TRP channels comprise six large families of cation channels: TRPC, TRPM, TRPV, TRPP, TRPA, and TRPML with diverse ion selectivities and modes of activation. Depending on the isoform considered, activation of TRP channels can cause entry of Ca2+, Na+, or Mg2+ into cells. TRP channels have recently emerged as attractive drug targets for treatment of cardiovascular diseases since their expression and/or activation was shown to be disturbed in certain pathophysiological conditions, such as cardiac hypertrophy and hypertension. In this short review, we will summarize data on the expression of TRP channels in the three major cell types of the cardiovascular system: cardiomyocytes, endothelial cells, and smooth muscle cells and will review evidence for the involvement of TRP channels in mediating cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 209.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hardie RC (2004) Regulation of Drosophila TRP channels by lipid messengers. Novartis Found Symp 258:160–167, discussion 167–171, 263–266

    CAS  PubMed  Google Scholar 

  2. Hardie RC (2007) TRP channels and lipids: from Drosophila to mammalian physiology. J Physiol 578(Pt 1):9–24

    CAS  PubMed  Google Scholar 

  3. Hardie RC, Minke B (1993) Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci 16(9):371–376

    CAS  PubMed  Google Scholar 

  4. Minke B (2006) TRP channels and Ca2+ signaling. Cell Calcium 40(3):261–275

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Minke B, Cook B (2002) TRP channel ­proteins and signal transduction. Physiol Rev 82(2):429–472

    CAS  PubMed  Google Scholar 

  6. Montell C (2005) Drosophila TRP channels. Pflugers Arch 451(1):19–28

    CAS  PubMed  Google Scholar 

  7. Nilius B (2007) TRP channels in disease. Biochim Biophys Acta 1772(8):805–812

    CAS  PubMed  Google Scholar 

  8. Montell C (2001) Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Sci STKE 2001:RE1

    CAS  PubMed  Google Scholar 

  9. Yue L et al (2001) CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature 410(6829):705–709

    CAS  PubMed  Google Scholar 

  10. Vennekens R et al (2000) Permeation and gating properties of the novel epithelial Ca(2+) channel. J Biol Chem 275(6):3963–9

    CAS  PubMed  Google Scholar 

  11. Gwanyanya A et al (2004) Magnesium-inhibited, TRPM6/7-like channel in cardiac myocytes: permeation of divalent cations and pH-mediated regulation. J Physiol 559(Pt 3):761–776

    CAS  PubMed  Google Scholar 

  12. Demion M et al (2007) TRPM4, a Ca2+-activated nonselective cation channel in mouse sino-atrial node cells. Cardiovasc Res 73(3):531–538

    CAS  PubMed  Google Scholar 

  13. Prawitt D et al (2003) TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc Natl Acad Sci USA 100(25):15166–15171

    CAS  PubMed  Google Scholar 

  14. Clapham DE et al (2003) International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. Pharmacol Rev 55(4):591–596

    PubMed  Google Scholar 

  15. Flockerzi V (2007) An introduction on TRP channels. Handbook of Experimental Pharmacology 179:1–19

    CAS  PubMed  Google Scholar 

  16. Damann N, Voets T, Nilius B (2008) TRPs in our senses. Curr Biol 18(18):R880–9

    CAS  PubMed  Google Scholar 

  17. Trebak M (2006) Canonical transient receptor potential channels in disease: targets for novel drug therapy? Drug Discov Today 11(19–20):924–930

    CAS  PubMed  Google Scholar 

  18. Trebak M et al (2007) Phospholipase C-coupled receptors and activation of TRPC channels. Handb Exp Pharmacol 179:593–614

    CAS  PubMed  Google Scholar 

  19. Vazquez G et al (2004) The mammalian TRPC cation channels. Biochim Biophys Acta 1742(1–3):21–36

    CAS  PubMed  Google Scholar 

  20. Yildirim E, Birnbaumer L (2007) TRPC2: molecular biology and functional importance. Handb Exp Pharmacol 179:53–75

    CAS  PubMed  Google Scholar 

  21. Gonzalez-Cobos JC, Trebak M (2010) TRPC channels in smooth muscle cells. Front Biosci 15:1023–1039

    CAS  Google Scholar 

  22. Owsianik G et al (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717

    CAS  PubMed  Google Scholar 

  23. Liu X, Singh BB, Ambudkar IS (2003) TRPC1 is required for functional store-operated Ca2+ channels. Role of acidic amino acid residues in the S5-S6 region. J Biol Chem 278(13):11337–11343

    CAS  PubMed  Google Scholar 

  24. Plant TD, Schaefer M (2003) TRPC4 and TRPC5: receptor-operated Ca2+-permeable nonselective cation channels. Cell Calcium 33(5–6):441–50

    CAS  PubMed  Google Scholar 

  25. Wang YX, Zheng YM (2011) Molecular expression and functional role of canonical transient receptor potential channels in airway smooth muscle cells. Adv Exp Med Biol 704:731–747

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Pedersen SF, Owsianik G, Nilius B (2005) TRP channels: an overview. Cell Calcium 38(3–4):233–52

    CAS  PubMed  Google Scholar 

  27. Vennekens R et al (2002) Current understanding of mammalian TRP homologues. Cell Calcium 31(6):253–264

    CAS  PubMed  Google Scholar 

  28. Birnbaumer L (2009) The TRPC class of ion channels: a critical review of their roles in slow, sustained increases in intracellular Ca(2+) concentrations. Annu Rev Pharmacol Toxicol 49:395–426

    CAS  PubMed  Google Scholar 

  29. Hogan PG, Lewis RS, Rao A (2010) Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28:491–533

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Potier M, Trebak M (2008) New developments in the signaling mechanisms of the store-operated calcium entry pathway. Pflugers Arch 457(2):405–415

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Hofmann T et al (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397(6716):259–263

    CAS  PubMed  Google Scholar 

  32. Trebak M et al (2003) Signaling mechanism for receptor-activated canonical transient receptor potential 3 (TRPC3) channels. J Biol Chem 278(18):16244–16252

    CAS  PubMed  Google Scholar 

  33. Trebak M et al (2003) The TRPC3/6/7 subfamily of cation channels. Cell Calcium 33(5–6):451–461

    CAS  PubMed  Google Scholar 

  34. Lemonnier L, Trebak M, Putney JW Jr (2008) Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol-4,5-bisphosphate. Cell Calcium 43(5):506–514

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Trebak M et al (2005) Negative regulation of TRPC3 channels by protein kinase C-mediated phosphorylation of serine 712. Mol Pharmacol 67(2):558–563

    CAS  PubMed  Google Scholar 

  36. Gross SA et al (2009) TRPC5 is a Ca2+-activated channel functionally coupled to Ca2+-selective ion channels. J Biol Chem 284:34423–34432

    CAS  PubMed  Google Scholar 

  37. Trebak M et al (2009) Complex functions of phosphatidylinositol 4,5-bisphosphate in regulation of TRPC5 cation channels. Pflugers Arch 457(4):757–769

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Otsuguro K et al (2008) Isoform-specific inhibition of TRPC4 channel by phosphatidylinositol 4,5-bisphosphate. J Biol Chem 283(15):10026–10036

    CAS  PubMed  Google Scholar 

  39. Rychkov G, Barritt GJ (2007) TRPC1 Ca(2+)-permeable channels in animal cells. Handb Exp Pharmacol 179:23–52

    CAS  PubMed  Google Scholar 

  40. Eder P, Poteser M, Groschner K (2007) TRPC3: a multifunctional, pore-forming signalling molecule. Handb Exp Pharmacol 179:77–92

    CAS  PubMed  Google Scholar 

  41. Cavalie A (2007) Ionic channels formed by TRPC4. Handb Exp Pharmacol 179:93–108

    CAS  PubMed  Google Scholar 

  42. Beech DJ (2007) Canonical transient receptor potential 5. Handb Exp Pharmacol 179:109–123

    CAS  PubMed  Google Scholar 

  43. Dietrich A, Gudermann T (2007) Trpc6. Handb Exp Pharmacol 179:125–141

    CAS  PubMed  Google Scholar 

  44. Numaga T, Wakamori M, Mori Y (2007) Trpc7. Handb Exp Pharmacology 179:143–151

    CAS  Google Scholar 

  45. Feske S et al (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441(7090):179–185

    CAS  PubMed  Google Scholar 

  46. Liou J et al (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15(13):1235–1241

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Roos J et al (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445

    CAS  PubMed  Google Scholar 

  48. Vig M et al (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312(5777):1220–1223

    CAS  PubMed  Google Scholar 

  49. Zhang SL et al (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437(7060):902–905

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Bird GS et al (2008) Methods for studying store-operated calcium entry. Methods 46(3):204–212

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Draber P, Draberova L (2005) Lifting the fog in store-operated Ca2+ entry. Trends Immunol 26(12):621–624

    CAS  PubMed  Google Scholar 

  52. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85(2):757–810

    CAS  PubMed  Google Scholar 

  53. Yuan JP et al (2009) TRPC channels as STIM1-regulated SOCs. Channels (Austin) 3(4):221–225

    CAS  Google Scholar 

  54. Zeng W et al (2008) STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 32(3):439–448

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Yuan JP et al (2007) STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9(6):636–645

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Jardin I, Salido GM, Rosado JA (2008) Role of lipid rafts in the interaction between hTRPC1, Orai1 and STIM1. Channels 2(6):401–403

    PubMed  Google Scholar 

  57. Ong HL et al (2007) Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 282(12):9105–9116

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Ong HL, Ambudkar IS (2011) The dynamic complexity of the TRPC1 channelosome. Channels 5(5):424–431

    CAS  PubMed  Google Scholar 

  59. Dehaven W et al (2009) TRPC channels ­function independently of STIM1 and Orai1. J Physiol 587:2275–2298

    CAS  PubMed  Google Scholar 

  60. Caterina MJ et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824

    CAS  PubMed  Google Scholar 

  61. Earley S, Reading S, Brayden JE (2007) Functional significance of transient receptor potential channels in vascular function. In: Liedtke WB, Heller S (eds) TRP Ion Channel Function in Sensory Transduction and Cellular Signaling. CRC Presss, Boca Raton (FL)

    Google Scholar 

  62. Jin X, Touhey J, Gaudet R (2006) Structure of the N-terminal ankyrin repeat domain of the TRPV2 ion channel. J Biol Chem 281(35):25006–25010

    CAS  PubMed  Google Scholar 

  63. McCleverty CJ et al (2006) Crystal structure of the human TRPV2 channel ankyrin repeat domain. Prot Sci 15(9):2201–2206

    CAS  Google Scholar 

  64. Latorre R, Zaelzer C, Brauchi S (2009) Structure-functional intimacies of transient receptor potential channels. Quart Rev Biophys 42(3):201–246

    CAS  Google Scholar 

  65. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    CAS  PubMed  Google Scholar 

  66. Erler I et al (2004) Ca2+-selective transient receptor potential V channel architecture and function require a specific ankyrin repeat. J Biol Chem 279(33):34456–34463

    CAS  PubMed  Google Scholar 

  67. Arniges M et al (2006) Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J Biol Chem 281(3):1580–1586

    CAS  PubMed  Google Scholar 

  68. Rohacs T et al (2005) PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8(5):626–634

    CAS  PubMed  Google Scholar 

  69. Dray A, Forbes CA, Burgess GM (1990) Ruthenium red blocks the capsaicin-induced increase in intracellular calcium and activation of membrane currents in sensory neurones as well as the activation of peripheral nociceptors in vitro. Neurosci Lett 110(1–2):52–59

    CAS  PubMed  Google Scholar 

  70. Muraki K et al (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93(9):829–838

    CAS  PubMed  Google Scholar 

  71. Xu H et al (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418(6894):181–186

    CAS  PubMed  Google Scholar 

  72. Voets T et al (2002) Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 277(37):33704–33710

    CAS  PubMed  Google Scholar 

  73. Nilius B et al (2001) Pharmacological modulation of monovalent cation currents through the epithelial Ca2+ channel ECaC1. Br J Pharmacol 134(3):453–462

    CAS  PubMed  Google Scholar 

  74. Hoenderop JG et al (2001) Function and expression of the epithelial Ca(2+) channel family: comparison of mammalian ECaC1 and 2. J Physiol 537(Pt 3):747–761

    CAS  PubMed  Google Scholar 

  75. Colton CK, Zhu MX (2007) 2-Aminoethoxydiphenyl borate as a common activator of TRPV1, TRPV2, and TRPV3 channels. Handb Exp Pharmacol 179:173–187

    CAS  PubMed  Google Scholar 

  76. Kottgen M et al (2008) TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182(3):437–447

    PubMed  Google Scholar 

  77. Nilius B, Voets T (2004) Diversity of TRP channel activation. Novartis Found Symp 258:140–149, discussion 149–159, 263–266

    CAS  PubMed  Google Scholar 

  78. Pingle SC, Matta JA, Ahern GP (2007) Capsaicin receptor: TRPV1 a promiscuous TRP channel. Handb Exp Pharmacol 179:155–171

    CAS  PubMed  Google Scholar 

  79. Vriens J et al (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci USA 101(1):396–401

    CAS  PubMed  Google Scholar 

  80. Plant TD, Strotmann R (2007) Trpv4. Handb Exp Pharmacol 179:189–205

    CAS  PubMed  Google Scholar 

  81. Watanabe H et al (2003) Modulation of TRPV4 gating by intra- and extracellular Ca2+. Cell Calcium 33(5–6):489–495

    CAS  PubMed  Google Scholar 

  82. Tominaga M (2007) The role of TRP channels in thermosensation. In: Liedtke WB, Heller S (eds) TRP Ion Channel Function in Sensory Transduction and Cellular Signaling, Boca Raton (FL).

    Google Scholar 

  83. Clapham DE (2003) TRP channels as cellular sensors. Nature 426(6966):517–524

    CAS  PubMed  Google Scholar 

  84. Brauchi S et al (2006) A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J Neurosci 26(18):4835–4840

    CAS  PubMed  Google Scholar 

  85. Peng JB (2011) TRPV5 and TRPV6 in transcellular Ca(2+) transport: regulation, gene duplication, and polymorphisms in African populations. Adv Exp Med Biol 704:239–275

    CAS  PubMed  Google Scholar 

  86. Mensenkamp AR, Hoenderop JG, Bindels RJ (2007) TRPV5, the gateway to Ca2+ homeostasis. Handb Exp Pharmacol 179:207–220

    CAS  PubMed  Google Scholar 

  87. Wissenbach U, Niemeyer BA (2007) Trpv6. Handb Exp Pharmacol 179:221–234

    CAS  PubMed  Google Scholar 

  88. Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005(272):re3

    PubMed  Google Scholar 

  89. Fleig A, Penner R (2004) The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci 25(12):633–639

    CAS  PubMed  Google Scholar 

  90. Duncan LM et al (1998) Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res 58(7):1515–1520

    CAS  PubMed  Google Scholar 

  91. Eisfeld J, Luckhoff A (2007) Trpm2. Handb Exp Pharmacol 179:237–252

    CAS  PubMed  Google Scholar 

  92. Bessman MJ, Frick DN, O’Handley SF (1996) The MutT proteins or “Nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J Biol Chem 271(41):25059–25062

    CAS  PubMed  Google Scholar 

  93. Dunn CA et al (1999) Studies on the ADP-ribose pyrophosphatase subfamily of the nudix hydrolases and tentative identification of trgB, a gene associated with tellurite resistance. J Biol Chem 274(45):32318–32324

    CAS  PubMed  Google Scholar 

  94. Grimm C et al (2003) Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 278(24):21493–21501

    CAS  PubMed  Google Scholar 

  95. Kolisek M et al (2005) Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell 18(1):61–69

    CAS  PubMed  Google Scholar 

  96. Oancea E et al (2009) TRPM1 forms ion channels associated with melanin content in melanocytes. Sci Signal 2(70):re21

    Google Scholar 

  97. Koike C et al (2010) TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade. Proc Natl Acad Sci USA 107(1):332–337

    CAS  PubMed  Google Scholar 

  98. Morgans CW et al (2009) TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells. Proc Natl Acad Sci USA 106(45):19174–19178

    CAS  PubMed  Google Scholar 

  99. Miller BA, Zhang W (2011) TRP channels as mediators of oxidative stress. Adv Exp Med Biol 704:531–544

    CAS  PubMed  Google Scholar 

  100. Wehage E et al (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem 277(26):23150–23156

    CAS  PubMed  Google Scholar 

  101. Schmitz C et al (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114(2):191–200

    CAS  PubMed  Google Scholar 

  102. Matsushita M et al (2005) Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of TRPM7/ChaK1. J Biol Chem 280(21):20793–20803

    CAS  PubMed  Google Scholar 

  103. Peier AM et al (2002) A TRP channel that senses cold stimuli and menthol. Cell 108(5):705–715

    CAS  PubMed  Google Scholar 

  104. Talavera K et al (2005) Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438(7070):1022–1025

    CAS  PubMed  Google Scholar 

  105. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416(6876):52–58

    CAS  PubMed  Google Scholar 

  106. Liman ER (2007) TRPM5 and taste transduction. Handb Exp Pharmacol 179:287–298

    CAS  PubMed  Google Scholar 

  107. Oberwinkler J, Phillipp SE (2007) Trpm3. Handb Exp Pharmacol 179:253–267

    CAS  PubMed  Google Scholar 

  108. Vriens J et al (2011) TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70(3):482–494

    CAS  PubMed  Google Scholar 

  109. Mochizuki T et al (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272(5266):1339–1342

    CAS  PubMed  Google Scholar 

  110. Giamarchi A, Delmas P (2007) Activation mechanisms and functional roles of TRPP2 cation channels. In: Liedtke WB, Heller S (eds) TRP Ion Channel Function in Sensory Transduction and Cellular Signaling, Boca Raton (FL) 189–202

    Google Scholar 

  111. Gonzalez-Perrett S et al (2001) Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci USA 98(3):1182–1187

    CAS  PubMed  Google Scholar 

  112. Luo Y et al (2003) Native polycystin 2 functions as a plasma membrane Ca2+-permeable cation channel in renal epithelia. Mol Cell Biol 23(7):2600–2607

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Koulen P et al (2002) Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 4(3):191–197

    CAS  PubMed  Google Scholar 

  114. Delmas P (2005) Polycystins: polymodal receptor/ion-channel cellular sensors. Pflugers Archiv: Eur J Physiol 451(1):264–276

    CAS  Google Scholar 

  115. Dietrich A, Gudermann T (2011) TRP channels in the cardiopulmonary vasculature. Adv Exp Med Biol 704:781–810

    CAS  PubMed  Google Scholar 

  116. Garcia-Anoveros J, Nagata K (2007) Trpa1. Handb Exp Pharmacol 179:347–362

    CAS  PubMed  Google Scholar 

  117. Story GM et al (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112(6):819–829

    CAS  PubMed  Google Scholar 

  118. Jordt SE et al (2004) Mustard oils and ­cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427(6971):260–265

    CAS  PubMed  Google Scholar 

  119. Bautista DM et al (2005) Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci USA 102(34):12248–12252

    CAS  PubMed  Google Scholar 

  120. Bautista DM et al (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124(6):1269–1282

    CAS  PubMed  Google Scholar 

  121. Watanabe H et al (2009) The pathological role of transient receptor potential channels in heart disease. Circ J 73(3):419–427

    CAS  PubMed  Google Scholar 

  122. Ju YK et al (2007) Store-operated Ca2+ influx and expression of TRPC genes in mouse sinoatrial node. Circ Res 100(11):1605–1614

    CAS  PubMed  Google Scholar 

  123. Hirose M et al (2011) Diacylglycerol kinase zeta inhibits ventricular tachyarrhythmias in a mouse model of heart failure. Circ J 75(10):2333–2342

    CAS  PubMed  Google Scholar 

  124. Kruse M et al (2009) Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Invest 119(9):2737–2744

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Liu H et al (2010) Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circ Cardiovasc Genet 3(4):374–385

    CAS  PubMed  Google Scholar 

  126. Du J et al (2010) TRPM7-mediated Ca2+ signals confer fibrogenesis in human atrial fibrillation. Circ Res 106(5):992–1003

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Ramirez MT et al (1997) The nuclear deltaB isoform of Ca2+/calmodulin-dependent protein kinase II regulates atrial natriuretic factor gene expression in ventricular myocytes. J Biol Chem 272(49):31203–31208

    CAS  PubMed  Google Scholar 

  128. Kirchhefer U et al (1999) Activity of cAMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human hearts. Cardiovasc Res 42(1):254–261

    CAS  PubMed  Google Scholar 

  129. Molkentin JD et al (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93(2):215–228

    CAS  PubMed  Google Scholar 

  130. Frey N, McKinsey TA, Olson EN (2000) Decoding calcium signals involved in cardiac growth and function. Nature Med 6(11):1221–1227

    CAS  PubMed  Google Scholar 

  131. Molkentin JD, Dorn GW 2nd (2001) Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol 63:391–426

    CAS  PubMed  Google Scholar 

  132. Kuwahara K et al (2006) TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest 116(12):3114–3126

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Onohara N et al (2006) TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 25(22):5305–5316

    CAS  PubMed  Google Scholar 

  134. Brenner JS, Dolmetsch RE (2007) TrpC3 regulates hypertrophy-associated gene expression without affecting myocyte beating or cell size. PloS one 2(8):e802

    PubMed Central  PubMed  Google Scholar 

  135. Ohba T et al (2007) Upregulation of TRPC1 in the development of cardiac hypertrophy. J Mol Cell Cardiol 42(3):498–507

    CAS  PubMed  Google Scholar 

  136. Hofmann T et al (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA 99(11):7461–7466

    CAS  PubMed  Google Scholar 

  137. Vindis C et al (2010) Essential role of TRPC1 channels in cardiomyoblasts hypertrophy mediated by 5-HT2A serotonin receptors. Biochem Biophys Res Commun 391(1):979–983

    CAS  PubMed  Google Scholar 

  138. Ohba T et al (2009) Essential role of STIM1 in the development of cardiomyocyte hypertrophy. Biochem Biophys Res Commun 389(1):172–176

    CAS  PubMed  Google Scholar 

  139. Guinamard R et al (2006) Calcium-activated nonselective cation channels in mammalian cardiomyocytes. Trends Cardiovasc Med 16(7):245–250

    CAS  PubMed  Google Scholar 

  140. Thilo F et al (2010) Increased transient receptor potential vanilloid type 1 (TRPV1) channel expression in hypertrophic heart. Biochem Biophys Res Commun 401(1):98–103

    CAS  PubMed  Google Scholar 

  141. Wong CO, Yao X (2011) TRP channels in vascular endothelial cells. Adv Exp Med Biol 704:759–780

    CAS  PubMed  Google Scholar 

  142. Ahmmed GU, Malik AB (2005) Functional role of TRPC channels in the regulation of endothelial permeability. Pflugers Arch 451(1):131–142

    CAS  PubMed  Google Scholar 

  143. Lum H et al (1989) Calcium dependence of the thrombin-induced increase in endothelial albumin permeability. J Appl Physiol 66(3):1471–1476

    CAS  PubMed  Google Scholar 

  144. Ahmmed GU et al (2004) Protein kinase Calpha phosphorylates the TRPC1 channel and regulates store-operated Ca2+ entry in endothelial cells. J Biol Chem 279(20):20941–20949

    CAS  PubMed  Google Scholar 

  145. Moore TM et al (1998) Store-operated calcium entry promotes shape change in pulmonary endothelial cells expressing Trp1. Am J Physiol 275(3 Pt 1):L574–L582

    CAS  PubMed  Google Scholar 

  146. Tiruppathi C et al (2002) Impairment of store-operated Ca2+ entry in TRPC4(-/-) mice interferes with increase in lung microvascular permeability. Circ Res 91(1):70–76

    CAS  PubMed  Google Scholar 

  147. Brough GH et al (2001) Contribution of endogenously expressed Trp1 to a Ca2+-selective, store-operated Ca2+ entry pathway. FASEB J 15(10):1727–1738

    CAS  PubMed  Google Scholar 

  148. Freichel M et al (2001) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat Cell Biol 3(2):121–127

    CAS  PubMed  Google Scholar 

  149. Cioffi DL et al (2009) TRPing on the lung endothelium: calcium channels that regulate barrier function. Antioxid Redox Signal 11(4):765–776

    CAS  PubMed  Google Scholar 

  150. Abdullaev IF et al (2008) Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103(11):1289–1299

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Pocock TM, Foster RR, Bates DO (2004) Evidence of a role for TRPC channels in VEGF-mediated increased vascular permeability in vivo. Am J Physiol Heart Circ Physiol 286(3):H1015–H1026

    CAS  PubMed  Google Scholar 

  152. Cheng HW et al (2006) VEGF activates receptor-operated cation channels in human microvascular endothelial cells. Arterioscler Thromb Vasc Biol 26(8):1768–1776

    CAS  PubMed  Google Scholar 

  153. Mehta D, Malik AB (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86(1):279–367

    CAS  PubMed  Google Scholar 

  154. Hecquet CM, Malik AB (2009) Role of H(2)O(2)-activated TRPM2 calcium channel in oxidant-induced endothelial injury. Thromb Haemost 101(4):619–625

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Hecquet CM et al (2008) Role of TRPM2 channel in mediating H2O2-induced Ca2+ entry and endothelial hyperpermeability. Circ Res 102(3):347–355

    CAS  PubMed  Google Scholar 

  156. Gerzanich V et al (2009) De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nat Med 15(2):185–191

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Paszkowiak JJ, Dardik A (2003) Arterial wall shear stress: observations from the bench to the bedside. Vasc Endovascu Surg 37(1):47–57

    Google Scholar 

  158. House SJ et al (2008) The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease. Pflugers Arch 456(5):769–785

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Yoshizumi M et al (2003) Stress and vascular responses: atheroprotective effect of laminar fluid shear stress in endothelial cells: possible role of mitogen-activated protein kinases. J Pharmacol Sci 91(3):172–176

    CAS  PubMed  Google Scholar 

  160. Vriens J et al (2005) Modulation of the Ca2 permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circ Res 97(9):908–915

    CAS  PubMed  Google Scholar 

  161. Nilius B et al (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol 286(2):C195–C205

    CAS  PubMed  Google Scholar 

  162. Nauli SM et al (2003) Polycystins 1 and 2 mediate mechanosensation in the primary ­cilium of kidney cells. Nat Genet 33(2):129–137

    CAS  PubMed  Google Scholar 

  163. AbouAlaiwi WA et al (2009) Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res 104(7):860–869

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Earley S et al (2009) TRPV4-dependent dilation of peripheral resistance arteries influences arterial pressure. Am J Physiol Heart Circ Physiol 297(3):H1096–H1102

    CAS  PubMed  Google Scholar 

  165. Earley S et al (2005) TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ Res 97(12):1270–1279

    CAS  PubMed  Google Scholar 

  166. Earley S, Gonzales AL, Crnich R (2009) Endothelium-dependent cerebral artery dilation mediated by TRPA1 and Ca2+-activated K+ channels. Circ Res 104(8):987–994

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Watanabe H et al (2008) TRP channel and cardiovascular disease. Pharmacol Ther 118(3):337–351

    CAS  PubMed  Google Scholar 

  168. Bergdahl A et al (2003) Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing store-operated Ca2+ entry dependent on TRPC1. Circ Res 93(9):839–847

    CAS  PubMed  Google Scholar 

  169. Saleh SN et al (2006) Angiotensin II activates two cation conductances with distinct TRPC1 and TRPC6 channel properties in rabbit mesenteric artery myocytes. J Physiol 577(Pt 2):479–495

    CAS  PubMed  Google Scholar 

  170. Inoue R et al (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca(2+)-permeable cation channel. Circ Res 88(3):325–332

    CAS  PubMed  Google Scholar 

  171. Xie A et al (2007) Novel mechanism of endothelin-1-induced vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab 27(10):1692–1701

    CAS  PubMed  Google Scholar 

  172. Tai K et al (2008) Agonist-evoked calcium entry in vascular smooth muscle cells requires IP3 receptor-mediated activation of TRPC1. Eur J Pharmacol 583(1):135–147

    CAS  PubMed  Google Scholar 

  173. Tsvilovskyy VV et al (2009) Deletion of TRPC4 and TRPC6 in mice impairs smooth muscle contraction and intestinal motility in vivo. Gastroenterology 137(4):1415–1424

    PubMed Central  PubMed  Google Scholar 

  174. Xi Q et al (2008) IP3 constricts cerebral arteries via IP3 receptor-mediated TRPC3 channel activation and independently of sarcoplasmic reticulum Ca2+ release. Circ Res 102(9):1118–1126

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Lee YM et al (2003) TRPC5 as a candidate for the nonselective cation channel activated by muscarinic stimulation in murine stomach. Am J Physiol Gastrointest Liver Physiol 284(4):G604–G616

    CAS  PubMed  Google Scholar 

  176. Xu SZ et al (2006) A sphingosine-1-phosphate-activated calcium channel controlling vascular smooth muscle cell motility. Circ Res 98(11):1381–1389

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Golovina VA et al (2001) Upregulated TRP and enhanced capacitative Ca(2+) entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol 280(2):H746–H755

    CAS  PubMed  Google Scholar 

  178. Kumar B et al (2006) Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ Res 98(4):557–563

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Lin MJ et al (2004) Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ Res 95(5):496–505

    CAS  PubMed  Google Scholar 

  180. Bergdahl A et al (2005) Plasticity of TRPC expression in arterial smooth muscle: correlation with store-operated Ca2+ entry. Am J Physiol Cell Physiol 288(4):C872–C880

    CAS  PubMed  Google Scholar 

  181. Wang J et al (2005) Acute hypoxia increases intracellular [Ca2+] in pulmonary arterial smooth muscle by enhancing capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol 288(6):L1059–L1069

    CAS  PubMed  Google Scholar 

  182. Wang J et al (2006) Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 98(12):1528–1537

    CAS  PubMed  Google Scholar 

  183. Yu Y et al (2004) Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc Natl Acad Sci USA 101(38):13861–13866

    CAS  PubMed  Google Scholar 

  184. Firth AL, Remillard CV, Yuan JX (2007) TRP channels in hypertension. Biochim Biophys Acta 1772(8):895–906

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Zhang S et al (2004) ATP-induced mitogenesis is mediated by cyclic AMP response element-binding protein-enhanced TRPC4 expression and activity in human pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 287(5):C1192–C1201

    CAS  PubMed  Google Scholar 

  186. Earley S (2010) Vanilloid and melastatin ­transient receptor potential channels in vascular smooth muscle. Microcirculation 17(4):237–249

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Kark T et al (2008) Tissue-specific regulation of microvascular diameter: opposite functional roles of neuronal and smooth muscle located vanilloid receptor-1. Mol Pharmacol 73(5):1405–1412

    CAS  PubMed  Google Scholar 

  188. Wang YX et al (2008) Functional expression of transient receptor potential vanilloid-related channels in chronically hypoxic human pulmonary arterial smooth muscle cells. J Membr Biol 223(3):151–159

    CAS  PubMed  Google Scholar 

  189. Yang XR et al (2006) Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol 290(6):L1267–L1276

    CAS  PubMed  Google Scholar 

  190. Simard JM, Tarasov KV, Gerzanich V (2007) Non-selective cation channels, transient receptor potential channels and ischemic stroke. Biochim Biophys Acta 1772(8):947–957

    CAS  PubMed Central  PubMed  Google Scholar 

  191. McNulty S, Fonfria E (2005) The role of TRPM channels in cell death. Pflugers Archiv: Eur J Physiol 451(1):235–242

    CAS  Google Scholar 

  192. Perraud AL et al (2005) Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol Chem 280(7):6138–6148

    CAS  PubMed  Google Scholar 

  193. Kaneko S et al (2006) A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J Pharmacol Sci 101(1):66–76

    CAS  PubMed  Google Scholar 

  194. Kuhn FJ, Heiner I, Luckhoff A (2005) TRPM2: a calcium influx pathway regulated by oxidative stress and the novel second ­messenger ADP-ribose. Pflugers Arch 451(1):212–219

    PubMed  Google Scholar 

  195. Earley S, Waldron BJ, Brayden JE (2004) Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ Res 95(9):922–929

    CAS  PubMed  Google Scholar 

  196. Zholos A et al (2011) TRPM channels in the vasculature. Adv Exp Med Biol 704:707–729

    CAS  PubMed  Google Scholar 

  197. He Y et al (2005) Transient receptor potential melastatin 7 ion channels regulate magnesium homeostasis in vascular smooth muscle cells: role of angiotensin II. Circ Res 96(2):207–215

    CAS  PubMed  Google Scholar 

  198. Johnson CD et al (2009) Transient receptor potential melastatin 8 channel involvement in the regulation of vascular tone. Am J Physiol Heart Circ Physiol 296(6):H1868–H1877

    CAS  PubMed  Google Scholar 

  199. Zitt C et al (1996) Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron 16(6):1189–1196

    CAS  PubMed  Google Scholar 

  200. Saleh SN, Albert AP, Large WA (2009) Activation of native TRPC1/C5/C6 channels by endothelin-1 is mediated by both PIP3 and PIP2 in rabbit coronary artery myocytes. J Physiol 587(Pt 22):5361–5375

    CAS  PubMed  Google Scholar 

  201. Tu CL, Chang W, Bikle DD (2005) Phospholipase cgamma1 is required for activation of store-operated channels in human keratinocytes. J Invest Dermatol 124(1):187–197

    CAS  PubMed  Google Scholar 

  202. Delmas P et al (2002) Signaling microdomains define the specificity of receptor-mediated InsP(3) pathways in neurons. Neuron 34(2):209–220

    CAS  PubMed  Google Scholar 

  203. Allen DG, Whitehead NP, Yeung EW (2005) Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. J Physiol 567(Pt 3):723–735

    CAS  PubMed  Google Scholar 

  204. Nilius B et al (2007) Transient receptor potential cation channels in disease. Physiol Rev 87(1):165–217

    CAS  PubMed  Google Scholar 

  205. Formigli L et al (2009) Regulation of transient receptor potential canonical channel 1 (TRPC1) by sphingosine 1-phosphate in C2C12 myoblasts and its relevance for a role of mechanotransduction in skeletal muscle differentiation. J Cell Sci 122(Pt 9):1322–1333

    CAS  PubMed  Google Scholar 

  206. Kim SJ et al (2003) Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426(6964):285–291

    CAS  PubMed  Google Scholar 

  207. Lucas P et al (2003) A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40(3):551–561

    CAS  PubMed  Google Scholar 

  208. Tong Q et al (2004) Erythropoietin-modulated calcium influx through TRPC2 is mediated by phospholipase Cgamma and IP3R. Am J Physiol Cell Physiol 287(6):C1667–C1678

    CAS  PubMed  Google Scholar 

  209. Vannier B et al (1999) Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ entry channel. Proc Natl Acad Sci USA 96(5):2060–2064

    CAS  PubMed  Google Scholar 

  210. Zhang P, Yang C, Delay RJ (2010) Odors activate dual pathways, a TRPC2 and a AA-dependent pathway, in mouse vomeronasal neurons. Am J Physiol Cell Physiol 298(5):C1253–C1264

    CAS  PubMed  Google Scholar 

  211. Kamouchi M et al (1999) Properties of ­heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. J Physiol 518(Pt 2):345–358

    CAS  PubMed  Google Scholar 

  212. Kiselyov K et al (1998) Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396(6710):478–482

    CAS  PubMed  Google Scholar 

  213. Trebak M et al (2002) Comparison of human TRPC3 channels in receptor-activated and store-operated modes. Differential sensitivity to channel blockers suggests fundamental differences in channel composition. J Biol Chem 277(24):21617–21623

    CAS  PubMed  Google Scholar 

  214. Reading SA et al (2005) TRPC3 mediates pyrimidine receptor-induced depolarization of cerebral arteries. Am J Physiol Heart Circ Physiol 288(5):H2055–H2061

    CAS  PubMed  Google Scholar 

  215. Okada T et al (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274(39):27359–27370

    CAS  PubMed  Google Scholar 

  216. Ma HT et al (2000) Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 287(5458):1647–1651

    CAS  PubMed  Google Scholar 

  217. Zhu X, Jiang M, Birnbaumer L (1998) Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative Ca2+ entry. J Biol Chem 273(1):133–142

    CAS  PubMed  Google Scholar 

  218. McKay RR et al (2000) Cloning and expression of the human transient receptor potential 4 (TRP4) gene: localization and functional expression of human TRP4 and TRP3. Biochem J 351(Pt 3):735–746

    CAS  PubMed  Google Scholar 

  219. Philipp S et al (1996) A mammalian capacitative calcium entry channel homologous to Drosophila TRP and TRPL. Embo J 15(22):6166–6171

    CAS  PubMed  Google Scholar 

  220. Schaefer M et al (2002) Functional differences between TRPC4 splice variants. J Biol Chem 277(5):3752–3759

    CAS  PubMed  Google Scholar 

  221. Schaefer M et al (2000) Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem 275(23):17517–17526

    CAS  PubMed  Google Scholar 

  222. Ulloa A et al (2009) Reduction in TRPC4 expression specifically attenuates G-protein coupled receptor-stimulated increases in intracellular calcium in human myometrial cells. Cell calcium 46(1):73–84

    CAS  PubMed Central  PubMed  Google Scholar 

  223. Fowler MA et al (2007) Corticolimbic expression of TRPC4 and TRPC5 channels in the rodent brain. PLoS One 2(6):e573

    PubMed Central  PubMed  Google Scholar 

  224. Miller MR et al. (2010) Novel Chemical Inhibitor of TRPC4 Channels. Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for iotechnology Information (US); 2010 Dec 15 [updated 2011 May 26]

    Google Scholar 

  225. Okada T et al (1998) Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain. J Biol Chem 273(17):10279–10287

    CAS  PubMed  Google Scholar 

  226. Dresviannikov AV, Bolton TB, Zholos AV (2006) Muscarinic receptor-activated cationic channels in murine ileal myocytes. Br J Pharmacol 149(2):179–187

    CAS  PubMed  Google Scholar 

  227. Strubing C et al (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29(3):645–655

    CAS  PubMed  Google Scholar 

  228. Xu SZ et al (2005) Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br J Pharmacol 145(4):405–414

    CAS  PubMed  Google Scholar 

  229. Wong CO, Huang Y, Yao X (2010) Genistein potentiates activity of the cation channel TRPC5 independently of tyrosine kinases. Br J Pharmacol 159(7):1486–1496

    CAS  PubMed  Google Scholar 

  230. Jung S et al (2003) Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J Biol Chem 278(6):3562–3571

    CAS  PubMed  Google Scholar 

  231. Albert AP, Saleh SN, Large WA (2008) Inhibition of native TRPC6 channel activity by phosphatidylinositol 4,5-bisphosphate in mesenteric artery myocytes. J Physiol 586(13):3087–3095

    CAS  PubMed  Google Scholar 

  232. Spassova MA et al (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 103:16586–16591

    CAS  PubMed  Google Scholar 

  233. Basora N et al (2003) 20-hydroxyeicosatetraenoic acid (20-HETE) activates mouse TRPC6 channels expressed in HEK293 cells. J Biol Chem 278(34):31709–31716

    CAS  PubMed  Google Scholar 

  234. Leuner K et al (2007) Hyperforin—a key constituent of St. John’s wort specifically activates TRPC6 channels. Faseb J 21(14):4101–4111

    CAS  PubMed  Google Scholar 

  235. Vazquez G et al (2006) Native TRPC7 channel activation by an inositol trisphosphate receptor-dependent mechanism. J Biol Chem 281(35):25250–25258

    CAS  PubMed Central  PubMed  Google Scholar 

  236. Lievremont JP, Bird GS, Putney JW Jr (2004) Canonical transient receptor potential TRPC7 can function as both a receptor- and store-operated channel in HEK-293 cells. Am J Physiol Cell Physiol 287(6):C1709–C1716

    CAS  PubMed  Google Scholar 

  237. Samways DS, Egan TM (2011) Calcium-dependent decrease in the single-channel conductance of TRPV1. Pflugers Archiv: Eur J Physiol 462(5):681–691

    CAS  Google Scholar 

  238. Mohapatra DP et al (2003) A tyrosine residue in TM6 of the Vanilloid Receptor TRPV1 involved in desensitization and calcium permeability of capsaicin-activated currents. Mol Cell Neurosci 23(2):314–324

    CAS  PubMed  Google Scholar 

  239. Tominaga M et al (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21(3):531–543

    CAS  PubMed  Google Scholar 

  240. Zygmunt PM et al (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400(6743):452–457

    CAS  PubMed  Google Scholar 

  241. Szallasi A et al (1999) The cloned rat vanilloid receptor VR1 mediates both R-type binding and C-type calcium response in dorsal root ganglion neurons. Mol Pharmacol 56(3):581–587

    CAS  PubMed  Google Scholar 

  242. Woo DH et al (2008) Direct activation of transient receptor potential vanilloid 1(TRPV1) by diacylglycerol (DAG). Mol Pain 4:42

    PubMed Central  PubMed  Google Scholar 

  243. McIntyre P et al (2001) Pharmacological differences between the human and rat vanilloid receptor 1 (VR1). Br J Pharmacol 132(5):1084–1094

    CAS  PubMed  Google Scholar 

  244. Huang SM et al (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA 99(12):8400–8405

    CAS  PubMed  Google Scholar 

  245. Bevan S et al (1992) Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin. Br J Pharmacol 107(2):544–552

    CAS  PubMed  Google Scholar 

  246. Poblete IM et al (2005) Anandamide elicits an acute release of nitric oxide through endothelial TRPV1 receptor activation in the rat arterial mesenteric bed. J Physiol 568(Pt 2):539–551

    CAS  PubMed  Google Scholar 

  247. Gunthorpe MJ et al (2004) Identification and characterisation of SB-366791, a potent and selective vanilloid receptor (VR1/TRPV1) antagonist. Neuropharmacology 46(1):133–149

    CAS  PubMed  Google Scholar 

  248. Rami HK et al (2004) Discovery of small molecule antagonists of TRPV1. Bioorg Med Chem Lett 14(14):3631–3634

    CAS  PubMed  Google Scholar 

  249. Caterina MJ et al (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398(6726):436–441

    CAS  PubMed  Google Scholar 

  250. Moqrich A et al (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307(5714):1468–1472

    CAS  PubMed  Google Scholar 

  251. Strotmann R et al (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2(10):695–702

    CAS  PubMed  Google Scholar 

  252. Liedtke W et al (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103(3):525–535

    CAS  PubMed Central  PubMed  Google Scholar 

  253. Guler AD et al (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22(15):6408–6414

    CAS  PubMed  Google Scholar 

  254. Birder L et al (2007) Activation of urothelial transient receptor potential vanilloid 4 by 4alpha-phorbol 12,13-didecanoate contributes to altered bladder reflexes in the rat. J Pharmacol Exp Ther 323(1):227–235

    CAS  PubMed Central  PubMed  Google Scholar 

  255. Thorneloe KS et al (2008) N-((1 S)-1-{[4-((2 S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropa noyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamid e (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: Part I. J Pharmacol Exp Ther 326(2):432–442

    CAS  PubMed  Google Scholar 

  256. Nilius B et al (2000) Whole-cell and single channel monovalent cation currents through the novel rabbit epithelial Ca2+ channel ECaC. J Physiol 527(Pt 2):239–248

    CAS  PubMed  Google Scholar 

  257. Lee J et al (2005) PIP2 activates TRPV5 and releases its inhibition by intracellular Mg2+. J Gen Physiol 126(5):439–451

    CAS  PubMed Central  PubMed  Google Scholar 

  258. Schindl R et al (2002) Store depletion-activated CaT1 currents in rat basophilic leukemia mast cells are inhibited by 2-aminoethoxydiphenyl borate. Evidence for a regulatory component that controls activation of both CaT1 and CRAC (Ca(2+) release-activated Ca(2+) channel) channels. J Biol Chem 277(30):26950–26958

    CAS  PubMed  Google Scholar 

  259. Bakowski D, Parekh AB (2002) Permeation through store-operated CRAC channels in divalent-free solution: potential problems and implications for putative CRAC channel genes. Cell Calcium 32(5–6):379–391

    CAS  PubMed  Google Scholar 

  260. Xu XZ et al (2001) Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc Natl Acad Sci USA 98(19):10692–10697

    CAS  PubMed  Google Scholar 

  261. Kraft R et al (2004) Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol Cell Physiol 286(1):C129–C137

    CAS  PubMed  Google Scholar 

  262. Sano Y et al (2001) Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293(5533):1327–1330

    CAS  PubMed  Google Scholar 

  263. Naziroglu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32(11):1990–2001

    CAS  PubMed  Google Scholar 

  264. Hill K et al (2004) Flufenamic acid is a pH-dependent antagonist of TRPM2 channels. Neuropharmacology 47(3):450–460

    CAS  PubMed  Google Scholar 

  265. Togashi K, Inada H, Tominaga M (2008) Inhibition of the transient receptor potential cation channel TRPM2 by 2-aminoethoxydiphenyl borate (2-APB). Br J Pharmacol 153(6):1324–1330

    CAS  PubMed  Google Scholar 

  266. Hill K, McNulty S, Randall AD (2004) Inhibition of TRPM2 channels by the antifungal agents clotrimazole and econazole. Naunyn Schmiedebergs Arch Pharmacol 370(4):227–237

    CAS  PubMed  Google Scholar 

  267. Lambert S et al (2011) Transient receptor potential melastatin 1 (TRPM1) is an ion-conducting plasma membrane channel inhibited by zinc ions. J Biol Chem 286(14):12221–12233

    CAS  PubMed  Google Scholar 

  268. Nilius B et al (2004) Decavanadate modulates gating of TRPM4 cation channels. J Physiol 560(Pt 3):753–765

    CAS  PubMed  Google Scholar 

  269. Takezawa R et al (2006) A pyrazole derivative potently inhibits lymphocyte Ca2+ influx and cytokine production by facilitating transient receptor potential melastatin 4 channel activity. Mol Pharmacol 69(4):1413–1420

    CAS  PubMed  Google Scholar 

  270. Nilius B et al (2005) Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem 280(8):6423–6433

    CAS  PubMed  Google Scholar 

  271. Nilius B et al (2006) The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J 25(3):467–478

    CAS  PubMed  Google Scholar 

  272. Nilius B et al (2004) Intracellular nucleotides and polyamines inhibit the Ca2+-activated cation channel TRPM4b. Pflugers Archiv: Eur J Physiol 448(1):70–75

    CAS  Google Scholar 

  273. Ullrich ND et al (2005) Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell calcium 37(3):267–278

    CAS  PubMed  Google Scholar 

  274. Hofmann T et al (2003) TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Curr Biol 13(13):1153–1158

    CAS  PubMed  Google Scholar 

  275. Voets T et al (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279(1):19–25

    CAS  PubMed  Google Scholar 

  276. Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291(5506):1043–1047

    CAS  PubMed  Google Scholar 

  277. Kerschbaum HH, Cahalan MD (1999) Single-channel recording of a store-operated Ca2+ channel in Jurkat T lymphocytes. Science 283(5403):836–839

    CAS  PubMed  Google Scholar 

  278. Nadler MJ et al (2001) LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411(6837):590–595

    CAS  PubMed  Google Scholar 

  279. Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol 4(5):329–336

    CAS  PubMed  Google Scholar 

  280. Kerschbaum HH, Kozak JA, Cahalan MD (2003) Polyvalent cations as permeant probes of MIC and TRPM7 pores. Biophys J 84(4):2293–2305

    CAS  PubMed Central  PubMed  Google Scholar 

  281. Hu HZ et al (2004) 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J Biol Chem 279(34):35741–35748

    CAS  PubMed  Google Scholar 

  282. Weil A et al (2005) Conservation of functional and pharmacological properties in the distantly related temperature sensors TRVP1 and TRPM8. Mol Pharmacol 68(2):518–527

    CAS  PubMed  Google Scholar 

  283. Bandell M et al (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41(6):849–857

    CAS  PubMed  Google Scholar 

  284. Niforatos W et al (2007) Activation of TRPA1 channels by the fatty acid amide hydrolase inhibitor 3’-carbamoylbiphenyl-3-yl cyclohexylcarbamate (URB597). Mol Pharmacol 71(5):1209–1216

    CAS  PubMed  Google Scholar 

  285. Hanaoka K et al (2000) Co-assembly of ­polycystin-1 and -2 produces unique cation-permeable currents. Nature 408(6815):990–994

    CAS  PubMed  Google Scholar 

  286. Montalbetti N et al (2005) Cytoskeletal regulation of calcium-permeable cation channels in the human syncytiotrophoblast: role of gelsolin. J Physiol 566(Pt 2):309–325

    CAS  PubMed  Google Scholar 

  287. Bai CX et al (2008) Activation of TRPP2 through mDia1-dependent voltage gating. EMBO J 27(9):1345–1356

    CAS  PubMed  Google Scholar 

  288. Montalbetti N et al (2005) Effect of hydro-osmotic pressure on polycystin-2 channel function in the human syncytiotrophoblast. Pflugers Archiv: Eur J Physiol 451(1):294–303

    CAS  Google Scholar 

  289. Cantero Mdel R, Cantiello HF (2011) Effect of lithium on the electrical properties of ­polycystin-2 (TRPP2). Eur Biophys J 40(9):1029–1042

    PubMed  Google Scholar 

  290. Chen XZ et al (1999) Polycystin-L is a ­calcium-regulated cation channel permeable to calcium ions. Nature 401(6751):383–386

    CAS  PubMed  Google Scholar 

  291. Ishimaru Y et al (2006) Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci USA 103(33):12569–12574

    CAS  PubMed  Google Scholar 

  292. Inada H et al (2008) Off-response property of an acid-activated cation channel complex PKD1L3-PKD2L1. EMBO Rep 9(7):690–697

    CAS  PubMed Central  PubMed  Google Scholar 

  293. Volk T et al (2003) A polycystin-2-like large conductance cation channel in rat left ventricular myocytes. Cardiovasc Res 58(1):76–88

    CAS  PubMed  Google Scholar 

  294. Ju YK, Allen DG (2007) Store-operated Ca2+ entry and TRPC expression; possible roles in cardiac pacemaker tissue. Heart Lung Circ 16(5):349–355

    CAS  PubMed  Google Scholar 

  295. Nishida M et al (2010) Regulation of cardiovascular functions by the phosphorylation of TRPC channels. Yakugaku Zasshi 130(11):1427–1433

    CAS  PubMed  Google Scholar 

  296. Wilkins BJ, Molkentin JD (2004) Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun 322(4):1178–1191

    CAS  PubMed  Google Scholar 

  297. Ward ML et al (2008) Stretch-activated channels in the heart: contributions to length-dependence and to cardiomyopathy. Prog Biophys Mol Biol 97(2–3):232–249

    CAS  PubMed  Google Scholar 

  298. Williams IA, Allen DG (2007) Intracellular calcium handling in ventricular myocytes from mdx mice. Am J Physiol Heart Circ Physiol 292(2):H846–H855

    CAS  PubMed  Google Scholar 

  299. Bush EW et al (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem 281(44):33487–33496

    CAS  PubMed  Google Scholar 

  300. Liu D et al (2006) Transient receptor potential channels in essential hypertension. J Hypertens 24(6):1105–1114

    CAS  PubMed  Google Scholar 

  301. Kitajima N et al (2011) TRPC3-mediated Ca2+ influx contributes to Rac1-mediated production of reactive oxygen species in MLP-deficient mouse hearts. Biochem Biophys Res Commun 409(1):108–113

    CAS  PubMed  Google Scholar 

  302. Mohl MC et al (2011) Regulation of murine cardiac contractility by activation of alpha(1A)-adrenergic receptor-operated Ca(2+) entry. Cardiovasc Res 91(2):310–319

    CAS  PubMed  Google Scholar 

  303. Guinamard R et al (2006) Functional expression of the TRPM4 cationic current in ­ventricular cardiomyocytes from spontaneously hypertensive rats. Hypertension 48(4):587–594

    CAS  PubMed  Google Scholar 

  304. Mathar I et al (2010) Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice. J Clin Invest 120(9):3267–3279

    CAS  PubMed Central  PubMed  Google Scholar 

  305. Pan HL, Chen SR (2004) Sensing tissue ischemia: another new function for capsaicin receptors? Circulation 110(13):1826–1831

    PubMed  Google Scholar 

  306. Hatano N, Itoh Y, Muraki K (2009) Cardiac fibroblasts have functional TRPV4 activated by 4alpha-phorbol 12,13-didecanoate. Life Sci 85(23–26):808–814

    CAS  PubMed  Google Scholar 

  307. Yang XR et al (2011) Upregulation of osmo-mechanosensitive TRPV4 channel facilitates chronic hypoxia induced myogenic tone and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 302:L555–L568

    PubMed  Google Scholar 

  308. Senatore S et al (2010) Response to mechanical stress is mediated by the TRPA channel painless in the Drosophila heart. PLoS Genet 6(9):e1001088

    PubMed Central  PubMed  Google Scholar 

  309. Pennekamp P et al (2002) The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 12(11):938–943

    CAS  PubMed  Google Scholar 

  310. Wu G et al (2000) Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet 24(1):75–78

    CAS  PubMed  Google Scholar 

  311. Paria BC et al (2003) Tumor necrosis factor-alpha induces nuclear factor-kappaB-dependent TRPC1 expression in endothelial cells. J Biol Chem 278(39):37195–37203

    CAS  PubMed  Google Scholar 

  312. Paria BC et al (2004) Tumor necrosis factor-alpha-induced TRPC1 expression amplifies store-operated Ca2+ influx and endothelial permeability. Am J Physiol Lung Cell Mol Physiol 287(6):L1303–L1313

    CAS  PubMed  Google Scholar 

  313. Gifford SM, Yi FX, Bird IM (2006) Pregnancy-enhanced store-operated Ca2+ channel function in uterine artery endothelial cells is associated with enhanced agonist-specific transient receptor potential channel 3-inositol 1,4,5-trisphosphate receptor 2 interaction. J Endocrinol 190(2):385–395

    CAS  PubMed  Google Scholar 

  314. Balzer M, Lintschinger B, Groschner K (1999) Evidence for a role of Trp proteins in the oxidative stress-induced membrane conductances of porcine aortic endothelial cells. Cardiovasc Res 42(2):543–549

    CAS  PubMed  Google Scholar 

  315. Fantozzi I et al (2003) Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 285(6):L1233–L1245

    CAS  PubMed  Google Scholar 

  316. Wei L et al (2001) Functional interaction between TRP4 and CFTR in mouse aorta endothelial cells. BMC Physiol 1:3

    CAS  PubMed Central  PubMed  Google Scholar 

  317. Ge R et al (2009) Critical role of TRPC6 channels in VEGF-mediated angiogenesis. Cancer Lett 283(1):43–51

    CAS  PubMed  Google Scholar 

  318. Baldoli E, Maier JA (2011) Silencing TRPM7 mimics the effects of magnesium deficiency in human microvascular endothelial cells. Angiogenesis 15:0969–6970

    Google Scholar 

  319. Domenicali M et al (2005) Increased anandamide induced relaxation in mesenteric arteries of cirrhotic rats: role of cannabinoid and vanilloid receptors. Gut 54(4):522–527

    CAS  PubMed  Google Scholar 

  320. Zhang DX et al (2009) Transient receptor potential vanilloid type 4-deficient mice exhibit impaired endothelium-dependent relaxation induced by acetylcholine in vitro and in vivo. Hypertension 53(3):532–538

    CAS  PubMed Central  PubMed  Google Scholar 

  321. Zhu G et al (2009) Association of TRPV4 gene polymorphisms with chronic obstructive pulmonary disease. Hum Mol Genet 18(11):2053–2062

    CAS  PubMed  Google Scholar 

  322. Kwan HY, Huang Y, Yao X (2007) TRP channels in endothelial function and dysfunction. Biochim Biophys Acta 1772(8):907–914

    CAS  PubMed  Google Scholar 

  323. Ng LC et al (2009) TRPC1 and STIM1 mediate capacitative Ca2+ entry in mouse pulmonary arterial smooth muscle cells. J Physiol 587(Pt 11):2429–2442

    CAS  PubMed  Google Scholar 

  324. Sweeney M et al (2002) Inhibition of endogenous TRP1 decreases capacitative Ca2+ entry and attenuates pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 283(1):L144–L155

    CAS  PubMed  Google Scholar 

  325. White TA et al (2006) Role of transient receptor potential C3 in TNF-alpha-enhanced calcium influx in human airway myocytes. Am J Respir Cell Mol Biol 35(2):243–251

    CAS  PubMed  Google Scholar 

  326. Dalrymple A et al (2004) Physiological induction of transient receptor potential canonical proteins, calcium entry channels, in human myometrium: influence of pregnancy, labor, and interleukin-1 beta. J Clin Endocrinol Metab 89(3):1291–1300

    CAS  PubMed  Google Scholar 

  327. Torihashi S et al (2002) Calcium oscillation linked to pacemaking of interstitial cells of Cajal: requirement of calcium influx and localization of TRP4 in caveolae. J Biol Chem 277(21):19191–19197

    CAS  PubMed  Google Scholar 

  328. Yoshida T et al (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2(11):596–607

    CAS  PubMed  Google Scholar 

  329. Welsh DG et al (2002) Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 90(3):248–250

    CAS  PubMed  Google Scholar 

  330. Weissmann N et al (2006) Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl Acad Sci USA 103(50):19093–19098

    CAS  PubMed  Google Scholar 

  331. Nassini R et al (2010) Transient receptor potential channels as novel drug targets in respiratory diseases. Curr Opin Investig Drugs 11(5):535–542

    CAS  PubMed  Google Scholar 

  332. Naylor J et al (2010) Pregnenolone sulphate- and cholesterol-regulated TRPM3 channels coupled to vascular smooth muscle secretion and contraction. Circ Res 106(9):1507–1515

    CAS  PubMed Central  PubMed  Google Scholar 

  333. Yogi A et al (2009) Bradykinin regulates calpain and proinflammatory signaling through TRPM7-sensitive pathways in vascular smooth muscle cells. Am J Physiol Regul Integr Compar Physiol 296(2):R201–R207

    CAS  Google Scholar 

  334. Kim BJ et al (2005) Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastro­enterology 129(5):1504–1517

    CAS  PubMed  Google Scholar 

  335. Touyz RM et al (2006) Differential regulation of transient receptor potential melastatin 6 and 7 cation channels by ANG II in vascular smooth muscle cells from spontaneously hypertensive rats. Am J Physiol Regul Integr Compar Physiol 290(1):R73–R78

    CAS  Google Scholar 

  336. Mustafa S, Oriowo M (2005) Cooling-induced contraction of the rat gastric fundus: mediation via transient receptor potential (TRP) cation channel TRPM8 receptor and Rho-kinase activation. Clin Exp Pharmacol Physiol 32(10):832–838

    CAS  PubMed  Google Scholar 

  337. Wang Y et al (2008) Deletion of transientreceptor potential vanilloid type 1 receptors exaggerates renal damage in deoxycorticosterone acetate-salt hypertension. Hypertension 52(2):264–270

    CAS  PubMed  Google Scholar 

  338. Liedtke W, Simon SA (2004) A possible role for TRPV4 receptors in asthma. Am J Physiol Lung Cell Mol Physiol 287(2):L269–L271

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Trebak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

González-Cobos, J.C., Zhang, X., Motiani, R.K., Harmon, K.E., Trebak, M. (2012). TRPs to Cardiovascular Disease. In: Szallasi, A., Bíró, T. (eds) TRP Channels in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-095-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-095-3_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-094-6

  • Online ISBN: 978-1-62703-095-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics