Skip to main content

The Application of PET Imaging in Psychoneuroimmunology Research

  • Protocol
  • First Online:
Psychoneuroimmunology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 934))

Abstract

Positron emission tomography (PET) imaging is a research tool that allows in vivo measurements of brain metabolism and specific target molecules. PET imaging can be used to measure these brain variables in a variety of species, including human and non-human primates, and rodents. PET imaging can therefore be combined with various experimental and clinical model systems that are commonly used in psychoneuroimmunology research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morris ED, Constantinescu CC, Sullivan JM et al (2010) Noninvasive visualization of human dopamine dynamics from PET images. Neuroimage 51:135–144

    Article  PubMed  CAS  Google Scholar 

  2. Innis RB, Cunningham VJ, Delforge J et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539

    Article  PubMed  CAS  Google Scholar 

  3. Semmler A, Hermann S, Mormann F et al (2008) Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J Neuroinflammation 5:38

    Article  PubMed  Google Scholar 

  4. Iwashyna TJ, Ely EW, Smith DM et al (2010) Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304:1787–1794

    Article  PubMed  CAS  Google Scholar 

  5. DellaGioia N, Hannestad J (2010) A critical review of human endotoxin administration as an experimental paradigm of depression. Neurosci Biobehav Rev 34:130–143

    Article  PubMed  CAS  Google Scholar 

  6. Raison CL, Capuron L, Miller AH (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 27:24–31

    Article  PubMed  CAS  Google Scholar 

  7. Bucks RS, Gidron Y, Harris P et al (2008) Selective effects of upper respiratory tract infection on cognition, mood and emotion processing: a prospective study. Brain Behav Immun 22:399–407

    Article  PubMed  Google Scholar 

  8. Janicki-Deverts D, Cohen S, Doyle WJ et al (2007) Infection-induced proinflammatory cytokines are associated with decreases in positive affect, but not increases in negative affect. Brain Behav Immun 21:301–307

    Article  PubMed  CAS  Google Scholar 

  9. Hermann DM, Mullington J, Hinze-Selch D et al (1998) Endotoxin-induced changes in sleep and sleepiness during the day. Psychoneuroendocrinology 23:427–437

    Article  PubMed  CAS  Google Scholar 

  10. Reichenberg A, Yirmiya R, Schuld A et al (2001) Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 58:445–452

    Article  PubMed  CAS  Google Scholar 

  11. Wright CE, Strike PC, Brydon L et al (2005) Acute inflammation and negative mood: mediation by cytokine activation. Brain Behav Immun 19:345–350

    Article  PubMed  CAS  Google Scholar 

  12. Eisenberger NI, Inagaki TK, Rameson LT et al (2009) An fMRI study of cytokine-induced depressed mood and social pain: the role of sex differences. Neuroimage 47:881–890

    Article  PubMed  Google Scholar 

  13. Capuron L, Fornwalt FB, Knight BT et al (2009) Does cytokine-induced depression differ from idiopathic major depression in medically healthy individuals? J Affect Disord 119:181–185

    Article  PubMed  CAS  Google Scholar 

  14. De La Garza R II (2005) Endotoxin- or pro-inflammatory cytokine-induced sickness behavior as an animal model of depression: focus on anhedonia. Neurosci Biobehav Rev 29:761–770

    Article  Google Scholar 

  15. Dunn AJ, Swiergiel AH, de Beaurepaire R (2005) Cytokines as mediators of depression: what can we learn from animal studies? Neurosci Biobehav Rev 29:891–909

    Article  PubMed  CAS  Google Scholar 

  16. Pecchi E, Dallaporta M, Jean A et al (2009) Prostaglandins and sickness behavior: old story, new insights. Physiol Behav 97:279–292

    Article  PubMed  CAS  Google Scholar 

  17. Anisman H (2009) Cascading effects of stressors and inflammatory immune system activation: implications for major depressive disorder. J Psychiatry Neurosci 34:4–20

    PubMed  Google Scholar 

  18. Larson SJ, Dunn AJ (2001) Behavioral effects of cytokines. Brain Behav Immun 15:371–387

    Article  PubMed  CAS  Google Scholar 

  19. Frenois F, Moreau M, O’Connor J et al (2007) Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and ­hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology 32:516–531

    Article  PubMed  CAS  Google Scholar 

  20. Qin L, Wu X, Block ML et al (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462

    Article  PubMed  Google Scholar 

  21. Moreau M, Andre C, O’Connor JC et al (2008) Inoculation of Bacillus Calmette-Guerin to mice induces an acute episode of sickness behavior followed by chronic depressive-like behavior. Brain Behav Immun 22:1087–1095

    Article  PubMed  CAS  Google Scholar 

  22. Hannestad J, DellaGioia N, Ortiz N et al (2011) Citalopram reduces endotoxin-induced fatigue. Brain Behav Immun 25:256–259

    Article  PubMed  CAS  Google Scholar 

  23. Gosselin D, Rivest S (2008) MyD88 signaling in brain endothelial cells is essential for the neuronal activity and glucocorticoid release during systemic inflammation. Mol Psychiatry 13:480–497

    Article  PubMed  CAS  Google Scholar 

  24. Ching S, Zhang H, Belevych N et al (2007) Endothelial-specific knockdown of interleukin-1 (IL-1) type 1 receptor differentially alters CNS responses to IL-1 depending on its route of administration. J Neurosci 27:10476–10486

    Article  PubMed  CAS  Google Scholar 

  25. Dauphinee SM, Karsan A (2006) Lipopolysaccharide signaling in endothelial cells. Lab Invest 86:9–22

    Article  PubMed  CAS  Google Scholar 

  26. Magder S, Neculcea J, Neculcea V et al (2006) Lipopolysaccharide and TNF-alpha produce very similar changes in gene expression in human endothelial cells. J Vasc Res 43:447–461

    Article  PubMed  CAS  Google Scholar 

  27. Kapas L, Hansen MK, Chang HY et al (1998) Vagotomy attenuates but does not prevent the somnogenic and febrile effects of lipopolysaccharide in rats. Am J Physiol 274:R406–R411

    PubMed  CAS  Google Scholar 

  28. Opp MR, Toth LA (1998) Somnogenic and pyrogenic effects of interleukin-1beta and lipopolysaccharide in intact and vagotomized rats. Life Sci 62:923–936

    Article  PubMed  CAS  Google Scholar 

  29. Konsman JP, Luheshi GN, Bluthe RM et al (2000) The vagus nerve mediates behavioural depression, but not fever, in response to peripheral immune signals; a functional anatomical analysis. Eur J Neurosci 12:4434–4446

    Article  PubMed  CAS  Google Scholar 

  30. Reyes TM, Coe CL (1996) Interleukin-1 beta differentially affects interleukin-6 and soluble interleukin-6 receptor in the blood and central nervous system of the monkey. J Neuroimmunol 66:135–141

    Article  PubMed  CAS  Google Scholar 

  31. Raison CL, Borisov AS, Majer M et al (2009) Activation of central nervous system inflammatory pathways by interferon-alpha: relationship to monoamines and depression. Biol Psychiatry 65:296–303

    Article  PubMed  CAS  Google Scholar 

  32. Bierhaus A, Wolf J, Andrassy M et al (2003) A mechanism converting psychosocial stress into mononuclear cell activation. Proc Natl Acad Sci U S A 100:1920–1925

    Article  PubMed  CAS  Google Scholar 

  33. Pavlov VA, Tracey KJ (2005) The cholinergic anti-inflammatory pathway. Brain Behav Immun 19:493–499

    Article  PubMed  CAS  Google Scholar 

  34. Vida G, Pena G, Deitch EA et al (2011) Alpha7-cholinergic receptor mediates vagal induction of splenic norepinephrine. J Immunol 186:4340–4346

    Article  PubMed  CAS  Google Scholar 

  35. Wienhard K (2002) Measurement of glucose consumption using ((18)F)fluorodeoxyglucose. Methods 27:218–225

    Article  PubMed  CAS  Google Scholar 

  36. Capuron L, Pagnoni G, Demetrashvili MF et al (2007) Basal ganglia hypermetabolism and symptoms of fatigue during interferon-alpha therapy. Neuropsychopharmacology 32:2384–2392

    Article  PubMed  CAS  Google Scholar 

  37. Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289

    Article  PubMed  CAS  Google Scholar 

  38. Tambuyzer BR, Ponsaerts P, Nouwen EJ (2009) Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol 85:352–370

    Article  PubMed  CAS  Google Scholar 

  39. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  PubMed  CAS  Google Scholar 

  40. Maeda J, Higuchi M, Inaji M et al (2007) Phase-dependent roles of reactive microglia and astrocytes in nervous system injury as delineated by imaging of peripheral benzodiazepine receptor. Brain Res 1157:100–111

    Article  PubMed  CAS  Google Scholar 

  41. Li L, Lu J, Tay SS et al (2007) The function of microglia, either neuroprotection or neurotoxicity, is determined by the equilibrium among factors released from activated microglia in vitro. Brain Res 1159:8–17

    Article  PubMed  CAS  Google Scholar 

  42. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  PubMed  CAS  Google Scholar 

  43. Pinteaux E, Rothwell NJ, Boutin H (2006) Neuroprotective actions of endogenous interleukin-1 receptor antagonist (IL-1ra) are mediated by glia. Glia 53:551–556

    Article  PubMed  Google Scholar 

  44. Cosenza-Nashat M, Zhao ML, Suh HS et al (2009) Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 35:306–328

    Article  PubMed  CAS  Google Scholar 

  45. Batarseh A, Papadopoulos V (2010) Regulation of translocator protein 18 kDa (TSPO) expression in health and disease states. Mol Cell Endocrinol 327:1–12

    Article  PubMed  CAS  Google Scholar 

  46. Venneti S, Lopresti BJ, Wiley CA (2006) The peripheral benzodiazepine receptor (translocator protein 18 kDa) in microglia: from pathology to imaging. Prog Neurobiol 80:308–322

    Article  PubMed  CAS  Google Scholar 

  47. Rupprecht R, Papadopoulos V, Rammes G et al (2010) Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and ­psychiatric disorders. Nat Rev Drug Discov 9:971–988

    Article  PubMed  CAS  Google Scholar 

  48. Brown AK, Fujita M, Fujimura Y et al (2007) Radiation dosimetry and biodistribution in monkey and man of 11 C-PBR28: a PET radioligand to image inflammation. J Nucl Med 48:2072–2079

    Article  PubMed  CAS  Google Scholar 

  49. Imaizumi M, Briard E, Zoghbi SS et al (2008) Brain and whole-body imaging in nonhuman primates of ((11)C)PBR28, a promising PET radioligand for peripheral benzodiazepine receptors. Neuroimage 39:1289–1298

    Article  PubMed  Google Scholar 

  50. Redl H, Bahrami S (2005) Large animal models: baboons for trauma, shock, and sepsis studies. Shock 24(suppl 1):88–93

    Article  PubMed  Google Scholar 

  51. Reader AJ, Visvikis D, Erlandsson K et al (1998) Intercomparison of four reconstruction techniques for positron volume imaging with rotating planar detectors. Phys Med Biol 43:823–834

    Article  PubMed  CAS  Google Scholar 

  52. Fujimura Y, Kimura Y, Simeon FG et al (2010) Biodistribution and radiation dosimetry in humans of a new PET ligand, (18)F-PBR06, to image translocator protein (18 kDa). J Nucl Med 51:145–149

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks the following colleagues at the Yale PET Center for valuable inputs during the preparation of this chapter: Henry Huang, PhD; Keunpoong Lim, PhD; Jean-Dominique Gallezot, PhD; Beata Planeta-Wilson, MS; and Maria Corsi CNMT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Hannestad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hannestad, J. (2012). The Application of PET Imaging in Psychoneuroimmunology Research. In: Yan, Q. (eds) Psychoneuroimmunology. Methods in Molecular Biology, vol 934. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-071-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-071-7_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-070-0

  • Online ISBN: 978-1-62703-071-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics