Skip to main content

Humanization by CDR Grafting and Specificity-Determining Residue Grafting

  • Protocol
  • First Online:
Antibody Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 907))

Abstract

Humanized antibodies are constructed by CDR grafting, while retaining those murine framework residues that influence the antigen-binding activity. To reduce the immunogenicity of CDR-grafted humanized antibodies, the murine content in the CDR-grafted humanized antibodies is minimized through SDR grafting. Within each CDR, there are more variable positions that are directly involved in the interaction with antigen, i.e., specificity-determining residues (SDRs), whereas there are more conserved residues that maintain the conformations of CDRs loops. SDRs may be identified from the 3D structure of the antigen–antibody complex and/or the mutational analysis of the CDRs. An SDR-grafted humanized antibody is constructed by grafting the SDRs and the residues maintaining the conformations of the CDRs onto human template, and its immunogenic potential is evaluated by measuring the reactivity to the sera from patients who had been immunized with the parental antibody.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shawler DL et al (1985) Human immune response to multiple injections of murine monoclonal IgG. J Immunol 135:1530–1535

    CAS  PubMed  Google Scholar 

  2. Khazaeli MB, Conry RM, LoBuglio AF (1994) Human immune response to monoclonal antibodies. J Immunother Emphasis Tumor Immunol 15:42–52

    Article  CAS  PubMed  Google Scholar 

  3. Morrison SL et al (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A 81:6851–6855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bell M, Kamm M (2000) Aliment Phamacol Ther 14:501–514

    Article  CAS  Google Scholar 

  5. Jones PT et al (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525

    Article  CAS  PubMed  Google Scholar 

  6. Riechmann L et al (1988) Reshaping human antibodies for therapy. Nature 332:323–327

    Article  CAS  PubMed  Google Scholar 

  7. Queen C et al (1989) A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci U S A 86:10029–10033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Winter G, Harris WJ (1993) Immunol Today 14:243–246

    Article  CAS  PubMed  Google Scholar 

  9. Reichert JM (2005) Monoclonal antibody successes in the clinic. Nat Biotechnol 23:1073–1078

    Article  CAS  PubMed  Google Scholar 

  10. Hwang WY, Foote J (2005) Immunogenicity of engineered antibodies. Methods 36:3–10

    Article  CAS  PubMed  Google Scholar 

  11. Glaser SM et al (1992) Dissection of the combining site in a humanized anti-Tac antibody. J Immunol 149:2607–2614

    CAS  PubMed  Google Scholar 

  12. Padlan EA (1994) Anatomy of an antibody molecule. Mol Immunol 31:169–217

    Article  CAS  PubMed  Google Scholar 

  13. Padlan EA, Abergel C, Tipper JP (1995) Identification of specificity-determining residues in antibodies. FASEB J 9:133–139

    CAS  PubMed  Google Scholar 

  14. Tamura M et al (2000) Structural correlates of an anticarcinoma antibody: identification of specificity-determining residues (SDRs) and development of a minimally immunogenic antibody variant by retention of SDRs only. J Immunol 164:1432–1441

    CAS  PubMed  Google Scholar 

  15. De Pascalis R et al (2002) Grafting of “abbreviated” CDRs containing specificity determining residues (SDRs) essential for ligand contact to engineer a less immunogenic humanized mAb. J Immunol 169:3076–3084

    PubMed  Google Scholar 

  16. Gonzales NR et al (2003) Minimizing immunogenicity of the SDR-grafted humanized antibody CC49 by genetic manipulation of the framework residues. Mol Immunol 40:337–349

    Article  CAS  PubMed  Google Scholar 

  17. Yoon SO et al (2006) Construction, affinity maturation, and biological characterization of an anti-tumor-associated glycoprotein-72 humanized antibody. J Biol Chem 281:6985–6992

    Article  CAS  PubMed  Google Scholar 

  18. Kim K-S, Myung P-K, Hong HJ (2010) Construction of a humanized antibody to hepatitis B surface antigen by specificity determining residues (SDR)-grafting and de-immunization. Biochem Biophys Res Commun 396:231–237

    Article  CAS  PubMed  Google Scholar 

  19. Chi S-W et al (2007) Broadly neutralizing anti-hepatitis B virus antibody reveals a complementarity determining region H3 lid-­opening mechanism. Proc Natl Acad Sci U S A 104:9230–9235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Gonzales NR et al (2002) Surface plasmon resonance-based competition assay to assess the sera reactivity of variants of humanized antibodies. J Immunol Methods 268:197–210

    Article  CAS  PubMed  Google Scholar 

  21. Singer II et al (1993) Optimal humanization of 1B4, an anti-CD18 murine monoclonal antibody, is achieved by correct choice of human V-region framework sequences. J Immunol 150:2844–2857

    CAS  PubMed  Google Scholar 

  22. Rosok MJ et al (1996) A combinatorial library strategy for the rapid humanization of anticarcinoma BR96 Fab. J Biol Chem 271:22611–22618

    Article  CAS  PubMed  Google Scholar 

  23. Caldas C et al (2000) Design and synthesis of germline-based hemi-humanized single chain Fv against the CD18 surface antigen. Protein Eng 13:353–360

    Article  CAS  PubMed  Google Scholar 

  24. Tempest PR et al (1995) Identification of framework residues required to restore antigen binding during reshaping of a monoclonal antibody against the glycoprotein gB of human cytomegalovirus. Int J Biol Macromol 17:37–42

    Article  CAS  PubMed  Google Scholar 

  25. Karlsson K, Larsson A (2004) Affinity measurement using surface plasmon resonance. In: Benny KCLo (ed) Antibody engineering: methods and protocols, methods in molecular biology, vol 248. Humana, Totowa, NJ, pp 389–416

    Chapter  Google Scholar 

  26. Blake RC II, Blake DA (2004) Kinetic exclusion assays to study high-affinity binding interactions in homogenous solutions. In: Benny KCLo (ed) Antibody engineering: methods and protocols, methods in molecular biology, vol 248. Humana, Totowa, NJ, pp 417–430

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the Global Frontier Project grant (NRF-M1AXA-002-2010-0029762) of National Research Foundation funded by the Ministry of Education, Science and Technology of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyo Jeong Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kim, J.H., Hong, H.J. (2012). Humanization by CDR Grafting and Specificity-Determining Residue Grafting. In: Chames, P. (eds) Antibody Engineering. Methods in Molecular Biology, vol 907. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-974-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-974-7_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-973-0

  • Online ISBN: 978-1-61779-974-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics