Skip to main content

A Historical Overview of RNAi in Plants

  • Protocol
  • First Online:
Antiviral Resistance in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 894))

Abstract

RNA interference, or RNAi, is arguably one of the most significant discoveries in biology in the last several decades. First recognized in plants (where it was called post-transcriptional gene silencing, PTGS) RNAi is a gene down-regulation mechanism since demonstrated to exist in all eukaryotes. In RNAi, small RNAs (of about 21–24 nucleotides) function to guide specific effector proteins (members of the Argonaute protein family) to a target nucleotide sequence by complementary base pairing. The effector protein complex then down-regulates the expression of the targeted RNA or DNA. Small RNA-directed gene regulation systems were independently discovered (and named) in plants, fungi, worms, flies, and mammalian cells. Collectively, PTGS, RNA silencing, and co-suppression (in plants); quelling (in fungi and algae); and RNAi (in Caenorhabditis elegans, Drosophila, and mammalian cells) are all examples of small RNA-based gene regulation systems. From the very beginning, plant research has had a major impact on our understanding of RNAi. The purpose of this chapter is to provide an historical perspective and overview on the discovery, characterization, and applications of RNAi in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    PubMed  Google Scholar 

  2. van der Krol AR, Mur LA, Beld M, Mol JN, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299

    PubMed  Google Scholar 

  3. Lindbo JA, Dougherty WG (1992) Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189:725–733

    Article  PubMed  Google Scholar 

  4. Lindbo JA, Dougherty WG (1992) Pathogen-derived resistance to a potyvirus: immune and resistant phenotypes in transgenic tobacco expressing altered forms of a potyvirus coat protein nucleotide sequence. Mol Plant Microbe Interact 2:144–153

    Article  Google Scholar 

  5. Lindbo JA, Siolva-Rosales L, Proebsting WM, Dougherty WG (1993) Induction of a highly-specific antiviral state in transgenic plants: Implications for regulation of gene expression and virus resistance. Plant Cell 5:1749–1759

    PubMed  Google Scholar 

  6. Sanford J, Johnston S (1985) The concept of parasite-derived resistance: deriving resistance genes from the parasites own genome. J Theor Biol 113:395–405

    Article  Google Scholar 

  7. Eamens A, Wang M-B, Smith NA, Waterhouse PM (2008) RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol 147: 456–468

    Article  PubMed  Google Scholar 

  8. Lindbo JA, Dougherty WG (2005) Plant pathology and RNAi: a brief history. Ann Rev Phytopathol 43:191–204

    Article  Google Scholar 

  9. Dougherty WG, Parks TD (1995) Transgenes and gene suppression: telling us something new? Curr Opin Cell Biol 7:399–405

    Article  PubMed  Google Scholar 

  10. Jorgensen RA, Running MP, Meyerowitz EM (1996) Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol Biol 31: 957–973

    Article  PubMed  Google Scholar 

  11. Thierry D, Vaucheret H (1996) Sequence homology requirements for transcriptional silencing of 35S transgenes and post-transcriptional silencing of nitrite reductase (trans)genes by the tobacco 271 locus. Plant Mol Biol 32: 1075–83

    Article  PubMed  Google Scholar 

  12. Stam M, de Bruin R, Kenter S, van der Hoorn R, van Blokland R, Mol J et al (1997) Post-transcriptional silencing of chalcone synthase in Petunia by inverted transgene repeats. Plant J 12:63–82

    Article  Google Scholar 

  13. Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci U S A 95:13959–13964

    Article  PubMed  Google Scholar 

  14. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806–811

    Article  PubMed  Google Scholar 

  15. Tabara H, Grishok A, Mello CC (1998) RNAi in C. elegans: soaking in the genome sequence. Science 282:430–431

    Article  PubMed  Google Scholar 

  16. Rocheleau CE, Downes WD, Lin R, Wittman C, Bei Y, Cha YH et al (1997) Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90:707–716

    Article  PubMed  Google Scholar 

  17. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  PubMed  Google Scholar 

  18. Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296

    Article  PubMed  Google Scholar 

  19. Mette MF, Aufsatz W, van der Winden J, Matzke MA, Matzke AJ (2000) Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19:5194–5201

    Article  PubMed  Google Scholar 

  20. Tabara H, Sarkissian M, Kerlly WG, Fleenor J, Grishok A, Timmons L et al (1998) The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99:123–132

    Article  Google Scholar 

  21. Bosher JM, Labouesse M (2000) RNA interference: genetic wand and genetic watchdog. Nat Cell Biol 2:E31–E36

    Article  PubMed  Google Scholar 

  22. Fagard M, Boutet S, Morel JB, Bellini C, Vaucheret H (2000) AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Natl Acad Sci U S A 97:11650–11654

    Article  PubMed  Google Scholar 

  23. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  PubMed  Google Scholar 

  24. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:88–200

    Article  Google Scholar 

  25. Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20:6877–6888

    Article  PubMed  Google Scholar 

  26. Hammond SM, Bernstein E, Beach D, Hannon GJ (2001) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296

    Google Scholar 

  27. Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293:1146–1150

    Article  PubMed  Google Scholar 

  28. Meister G, Landthaler M, Patkaniowska A, Dorset Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    Article  PubMed  Google Scholar 

  29. Rand TA, Ginalski K, Grishin NV, Wang X (2004) Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc Natl Acad Sci U S A 101:14385–14389

    Article  PubMed  Google Scholar 

  30. Reinhart BJ, Weinstein EG, Rhoads MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  PubMed  Google Scholar 

  31. Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63

    Article  PubMed  Google Scholar 

  32. Jacobsen SE, Running MP, Meyerowitz EM (1999) Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development 126: 5231–5243

    PubMed  Google Scholar 

  33. Margis R, Fusaro AF, Smith NA, Curtin SJ, Watson JM, Finnegan EJ et al (2006) The evolution and diversification of Dicers in plants. FEBS Lett 580:2442–2450

    Article  PubMed  Google Scholar 

  34. Vaucheret H (2008) Plant ARGONAUTES. Trends Plant Sci 13:350–358

    Article  PubMed  Google Scholar 

  35. Mourrain P, Beclin C, Elmayan T, Feuurbach F, Gordon C, Morel JB et al (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101:533–342

    Article  PubMed  Google Scholar 

  36. Xie Z, Qi X (2008) Diverse small RNA-directed silencing pathways in plants. Biochim Biophys Acta 1779:720–724

    Article  PubMed  Google Scholar 

  37. Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933

    Article  PubMed  Google Scholar 

  38. Xie Z, Johansen LK, Gustafson AM, Kasshau KD, Lellis AD, Zilberman D et al (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:E104

    Article  PubMed  Google Scholar 

  39. Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771

    Article  PubMed  Google Scholar 

  40. Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8: 884–896

    Article  PubMed  Google Scholar 

  41. Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJ (2007) Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10: 512–519

    Article  PubMed  Google Scholar 

  42. Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ (2005) Elucidation of the small RNA component of the transcriptome. Science 309:1567–1569

    Article  PubMed  Google Scholar 

  43. Meyers BC, Green PJ, Lu C (2008) miRNAs in the plant genome: all things great and small. Genome Dyn 4:108–118

    Article  PubMed  Google Scholar 

  44. Reinhart BJ, Bartel DP (2002) Small RNAs correspond to centromere heterochromatic repeats. Science 297:1831

    Article  PubMed  Google Scholar 

  45. Finnegan EJ, Margis R, Waterhouse PM (2003) Posttranscriptional gene silencing is not compromised in the Arabidopsis CARPEL FACTORY (DICER-LIKE1) mutant, a homolog of Dicer-1 from Drosophila. Curr Biol 13:236–240

    Article  PubMed  Google Scholar 

  46. Lu C, Kulkarni K, Souret FF, Muthuvalliappan R, Tej SS, Poethig RS et al (2006) MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 16:1276–1288

    Article  PubMed  Google Scholar 

  47. Backman TW, Sullivan CM, Cumbie CM, Miller ZA, Chapman EJ, Fahlgren N et al (2008) Update of ASRP: the Arabidopsis small RNA project database. Nucleic Acids Res 36:D982–985

    Article  PubMed  Google Scholar 

  48. Vaucheret H (2005) RNA polymerase IV and transcriptional silencing. Nat Genet 37:659–660

    Article  PubMed  Google Scholar 

  49. Huettel B, Kanno T, Daxinger L, Bucher E, van der Winden J, Matzke AJ et al (2007) RNA-directed DNA methylation mediated by DRD1 and Pol IVb: a versatile pathway for transcriptional gene silencing in plants. Biochim Biophys Acta 1769:358–374

    Article  PubMed  Google Scholar 

  50. Kanno T, Huettel B, Mette MF, Aufsatz W, Jaligot E, Daxinger L et al (2005) Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat Genet 37:761–765

    Article  PubMed  Google Scholar 

  51. Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli VM et al (2004) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16:69–79

    Article  PubMed  Google Scholar 

  52. Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  PubMed  Google Scholar 

  53. Wang XJ, Gaasterland T, Chua NH (2005) Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol 6:R30

    Article  PubMed  Google Scholar 

  54. Molnár A, Csorba T, Lakatos L, Várallyay E, Lacomme C, Burgyán J (2005) Plant virus-derived small interfering RNAs originate predominantly from highly-structured single-stranded viral RNAs. J Virol 79:7812–7818

    Article  PubMed  Google Scholar 

  55. Moissiard G, Voinnet O (2006) RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. Proc Natl Acad Sci U S A 103:19593–19598

    Article  PubMed  Google Scholar 

  56. Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313:68–71

    Article  PubMed  Google Scholar 

  57. Anandalakshmi R, Pruss GJ, Ge X, Marathe R, Mallory AC, Smith et al (1998) A viral suppressor of gene silencing in plants. Proc Natl Acad Sci U S A 95:13079–13084

    Article  PubMed  Google Scholar 

  58. Brigneti G, Voinnet O, Li WX, Ji LH, Ding SW, Baulcombe DC (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17:6739–6746

    Article  PubMed  Google Scholar 

  59. Kasschau KD, Carrington JC (1998) A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95:461–470

    Article  PubMed  Google Scholar 

  60. Mlotshwa S, Voinnet O, Mette MF, Matzke M, Vaucheret H, Ding SW et al (2002) RNA silencing and the mobile silencing signal. Plant Cell 14(Suppl):S289–301

    PubMed  Google Scholar 

  61. Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003) Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J 22: 4523–4533

    Article  PubMed  Google Scholar 

  62. Dunoyer P, Himber C, Voinnet O (2005) DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat Genet 37: 1356–1360

    Article  PubMed  Google Scholar 

  63. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  PubMed  Google Scholar 

  64. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L et al (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  PubMed  Google Scholar 

  65. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  PubMed  Google Scholar 

  66. Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  PubMed  Google Scholar 

  67. Kidner CA, Martienssen RA (2005) The developmental role of microRNA in plants. Curr Opin Plant Biol 8:38–44

    Article  PubMed  Google Scholar 

  68. Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81: 6690–6699

    Article  PubMed  Google Scholar 

  69. Sudarshana MR, Roy G, Falk BW (2007) Methods for engineering resistance to plant viruses. Methods Mol Biol 354:183–195

    PubMed  Google Scholar 

  70. Kumagai MH, Donson J, Della-Cioppa G, Harvey D, Hanley K, Grill LK (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci U S A 92:1679–1683

    Article  PubMed  Google Scholar 

  71. Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937–946

    PubMed  Google Scholar 

  72. Dinesh-Kumar SP, Anandalakshmi R, Marathe R, Schiff M, Liu Y (2003) Virus-induced gene silencing. Methods Mol Biol 236:287–294

    PubMed  Google Scholar 

  73. Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Technical advance. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25:237–245

    Article  PubMed  Google Scholar 

  74. Scofield SR, Huang L, Brandt AS, Gill BS (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138:2165–2173

    Article  PubMed  Google Scholar 

  75. Holzberg S, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30:315–327

    Article  PubMed  Google Scholar 

  76. Carrillo-Tripp J, Shimada-Beltran H, Rivera-Bustamante R (2006) Use of geminiviral vectors for functional genomics. Curr Opin Plant Biol 9:209–215

    Article  PubMed  Google Scholar 

  77. Muangsan N, Beclin C, Vaucheret H, Robertson D (2004) Geminivirus VIGS of endogenous genes requires SGS2/SDE1 and SGS3 and defines a new branch in the genetic pathway for silencing in plants. Plant J 38:1004–1014

    Article  PubMed  Google Scholar 

  78. Cai X, Wang C, Xu Y, Zheng Z, Zhou X (2007) Efficient gene silencing induction in tomato by a viral satellite DNA vector. Virus Res 125:169–175

    Article  PubMed  Google Scholar 

  79. Tao X, Zhou X (2004) A modified viral satellite DNA that suppresses gene expression in plants. Plant J 38:850–860

    Article  PubMed  Google Scholar 

  80. Fuchs M, Gonsalves D (2007) Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Ann Rev Phytopathol 45:173–202

    Article  Google Scholar 

  81. Birmingham A, Anderson E, Sullivan K, Reynolds A, Boese Q, Leake D et al (2007) A protocol for designing siRNAs with high functionality and specificity. Nat Protoc 2:2068–2078

    Article  PubMed  Google Scholar 

  82. Boese Q, Leake D, Read S, Scaringe SA, Marshall WS, Khvorova A et al (2005) Mechanistic insights aid computational short interfering RNA design. Methods Enzymol 392:73–96

    Article  PubMed  Google Scholar 

  83. Nakatsuka T, Abe Y, Kakizaki Y, Yamamura S, Nishihara M (2007) Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes. Plant Cell Rep 26:1951–1959

    Article  PubMed  Google Scholar 

  84. Houmard NM, Mainville JL, Bonin CP, Huang S, Luethy MH, Malvar TM (2007) High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi. Plant Biotechnol J 5:605–614

    Article  PubMed  Google Scholar 

  85. Liu Q, Singh SP, Green AG (2002) High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol 129:1732–1743

    Article  PubMed  Google Scholar 

  86. Liu Q, Singh S, Green A (2002) High-oleic and high-stearic cottonseed oils: nutritionally improved cooking oils developed using gene silencing. J Am Coll Nutr 21(3 Suppl): 205S–211S

    PubMed  Google Scholar 

  87. Regina A, Bird A, Topping D, Bowden S, Freeman J, Kosar-hashemi B et al (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci U S A 103:3546–3551

    Article  PubMed  Google Scholar 

  88. Fairbairn DJ, Cavallaro AS, Bernard M, Mahalinga-Iyer J, Graham MW, Botella JR (2007) Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes. Planta 226:1525–1533

    Article  PubMed  Google Scholar 

  89. Yadav BC, Veluthami K, Subramaniam K (2006) Host-generated double-stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222

    Article  PubMed  Google Scholar 

  90. Huang G, Allen R, Davis EL, Baum TJ, Hussay RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci U S A 103: 14302–14306

    Article  PubMed  Google Scholar 

  91. Steeves RM, de Bruin R, Kenter S, van der Hoorn R, van Blokland R et al (2006) Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Funct Plant Biol 33:991–999

    Article  Google Scholar 

  92. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Hagan et al (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  PubMed  Google Scholar 

  93. Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ et al (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  PubMed  Google Scholar 

  94. Price DR, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–400

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Lindbo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lindbo, J.A. (2012). A Historical Overview of RNAi in Plants. In: Watson, J., Wang, MB. (eds) Antiviral Resistance in Plants. Methods in Molecular Biology, vol 894. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-882-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-882-5_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-881-8

  • Online ISBN: 978-1-61779-882-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics