Skip to main content

Electrophysiological Assessment of Spinal Cord Function on Rodents Using tcMMEP and SSEP

  • Protocol
  • First Online:
Animal Models of Acute Neurological Injuries II

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 1729 Accesses

Abstract

Electrophysiological assays following experimental spinal cord injury objectively evaluate neurological function in the rodent. Major descending and ascending tracts can be monitored noninvasively using motor-evoked potentials and somatosensory-evoked potentials, respectively. This chapter summarizes the methods, procedures, and materials used to carry out these tests in our laboratory. Interpretation of results is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gonzalez AA et al (2009) Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg Focus 27(4):E6

    Article  PubMed  Google Scholar 

  2. MacDonald DB (2002) Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol 19(5):416–429

    Article  PubMed  Google Scholar 

  3. Adamson J et al (1989) Effects of selective spinal cord lesions on the spinal motor evoked potential (MEP) in the rat. Electroencephalogr Clin Neurophysiol 74(6):469–480

    Article  PubMed  CAS  Google Scholar 

  4. Baskin DS, Simpson RK Jr (1987) Corticomotor and somatosensory evoked potential evaluation of acute spinal cord injury in the rat. Neuro­surgery 20(6):871–877

    Article  PubMed  CAS  Google Scholar 

  5. Dull ST et al (1990) Amplitude and latency characteristics of spinal cord motor evoked potentials in the rat. Electroencephalogr Clin Neurophysiol 77(1):68–76

    Article  PubMed  CAS  Google Scholar 

  6. Fehlings MG et al (1988) Motor and somatosensory evoked potentials recorded from the rat. Electroencephalogr Clin Neurophysiol 69(1):65–78

    Article  PubMed  CAS  Google Scholar 

  7. Fehlings MG et al (1991) The electrophysiological assessment of the pyramidal and non-pyramidal tracts of the spinal cord of rats. Electroencephalogr Clin Neurophysiol Suppl 43:287–296

    PubMed  CAS  Google Scholar 

  8. Keller BP et al (1992) The effects of propofol anesthesia on transcortical electric evoked potentials in the rat. Neurosurgery 30(4):557–560

    Article  PubMed  CAS  Google Scholar 

  9. Shiau JS et al (1992) The effect of graded spinal cord injury on the extrapyramidal and pyramidal motor evoked potentials of the rat. Neurosurgery 30(1):76–84

    Article  PubMed  CAS  Google Scholar 

  10. Wang CX et al (1993) Motor evoked potentials in a static load model of spinal cord injury in the rat. Neurosurgery 32(2):269–273

    Article  PubMed  CAS  Google Scholar 

  11. Zappulla RA et al (1988) Noncortical origins of the spinal motor evoked potential in rats. Neurosurgery 22(5):846–852

    Article  PubMed  CAS  Google Scholar 

  12. Zileli M, Schramm J (1989) [Spinal and muscular evoked response following single stimulation of the motor cortex of the rat]. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 20(2):106–111

    PubMed  CAS  Google Scholar 

  13. Hill RL et al (2009) Anatomic and functional outcomes following a precise, graded, dorsal laceration spinal cord injury in C57BL/6 mice. J Neurotrauma 26(1):1–15

    Article  PubMed  Google Scholar 

  14. Lu M et al (2008) [Establishment and assessment of the mouse model for spinal cord injury]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 22(8):933–938

    PubMed  Google Scholar 

  15. Zhang YP et al (2007) Use of magnetic stimulation to elicit motor evoked potentials, somatosensory evoked potentials, and H-reflexes in non-sedated rodents. J Neurosci Methods 165(1):9–17

    Article  PubMed  Google Scholar 

  16. Marsden CD et al (1983) Direct electrical stimulation of corticospinal pathways through the intact scalp in human subjects. Adv Neurol 39:387–391

    PubMed  CAS  Google Scholar 

  17. Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285(5762):227

    Article  PubMed  CAS  Google Scholar 

  18. Merton PA et al (1982) Scope of a technique for electrical stimulation of human brain, spinal cord, and muscle. Lancet 2(8298):597–600

    Article  PubMed  CAS  Google Scholar 

  19. Fishback AS et al (1995) The effects of propofol on rat transcranial magnetic motor evoked potentials. Neurosurgery 37(5):969–974

    Article  PubMed  CAS  Google Scholar 

  20. Ghaly RF et al (1990) Effects of incremental ketamine hydrochloride doses on motor evoked potentials (MEPs) following transcranial magnetic stimulation: a primate study. J Neurosurg Anesthesiol 2(2):79–85

    Article  PubMed  CAS  Google Scholar 

  21. Hargreaves SJ, Watt JW (2005) Intravenous anaesthesia and repetitive transcranial magnetic stimulation monitoring in spinal column surgery. Br J Anaesth 94(1):70–73

    Article  PubMed  CAS  Google Scholar 

  22. Kawaguchi M et al (1996) Effect of isoflurane on motor-evoked potentials induced by direct electrical stimulation of the exposed motor cortex with single, double, and triple stimuli in rats. Anesthesiology 85(5):1176–1183

    Article  PubMed  CAS  Google Scholar 

  23. Kawaguchi M, Furuya H (2006) [Motor evoked potentials]. Masui 55(3):294–301

    PubMed  Google Scholar 

  24. Pechstein U et al (1998) Isoflurane plus nitrous oxide versus propofol for recording of motor evoked potentials after high frequency repetitive electrical stimulation. Electroencephalogr Clin Neurophysiol 108(2):175–181

    Article  PubMed  CAS  Google Scholar 

  25. Scheufler KM et al (2005) The modifying effects of stimulation pattern and propofol plasma concentration on motor-evoked potentials. Anesth Analg 100(2):440–447

    Article  PubMed  CAS  Google Scholar 

  26. Sloan TB, Heyer EJ (2002) Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol 19(5):430–443

    Article  PubMed  Google Scholar 

  27. Taniguchi M et al (1993) Effects of four intravenous anesthetic agents on motor evoked potentials elicited by magnetic transcranial stimulation. Neurosurgery 33(3):407–415

    Article  PubMed  CAS  Google Scholar 

  28. Toda Y (1992) [The effect of anesthetic agents on descending spinal cord evoked potential and the compound muscle action potentials elicited by stimulation at the cerebral motor cortex and the spinal cord]. Nippon Seikeigeka Gakkai Zasshi 66(4):279–290

    PubMed  CAS  Google Scholar 

  29. Ubags LH et al (1998) Influence of isoflurane on myogenic motor evoked potentials to single and multiple transcranial stimuli during nitrous oxide/opioid anesthesia. Neurosurgery 43(1):90–94

    Article  PubMed  CAS  Google Scholar 

  30. Glassman SD et al (1993) Anesthetic effects on motor evoked potentials in dogs. Spine 18(8):1083–1089

    Article  PubMed  CAS  Google Scholar 

  31. Linden RD et al (1999) Magnetic motor evoked potential monitoring in the rat. J Neurosurg 91(2 Suppl):205–210

    PubMed  CAS  Google Scholar 

  32. Allison T (1962) Recovery functions of somatosensory evoked responses in man. Electroencephalogr Clin Neurophysiol 14:331–343

    Article  PubMed  CAS  Google Scholar 

  33. Chandanwale AS et al (2008) Intra-operative somatosensory-evoked potential monitoring. J Orthop Surg (Hong Kong) 16(3):277–280

    CAS  Google Scholar 

  34. Eftekharpour E et al (2005) Structural and functional alterations of spinal cord axons in adult Long Evans Shaker (LES) dysmyelinated rats. Exp Neurol 193(2):334–349

    Article  PubMed  CAS  Google Scholar 

  35. Fehlings MG et al (1989) The relationships among the severity of spinal cord injury, motor and somatosensory evoked potentials and spinal cord blood flow. Electroencephalogr Clin Neurophysiol 74(4):241–259

    Article  PubMed  CAS  Google Scholar 

  36. Hurlbert RJ et al (1996) A novel sensory evoked potential for selective monitoring of the ventral spinal cord: from bench to bedside. Electroencephalogr Clin Neurophysiol Suppl 46:221–231

    PubMed  CAS  Google Scholar 

  37. Jou IM et al (2003) The effects of intrathecal tramadol on spinal somatosensory-evoked potentials and motor-evoked responses in rats. Anesth Analg 96(3):783–788

    Article  PubMed  CAS  Google Scholar 

  38. Muramatsu H et al (2009) Evoked potentials elicited on the cerebellar cortex by electrical stimulation of the rat spinocerebellar tract. Surg Neurol 72(4):395–400

    Article  PubMed  Google Scholar 

  39. Zhang YP et al (2008) Spinal cord contusion based on precise vertebral stabilization and tissue displacement measured by combined assessment to discriminate small functional differences. J Neurotrauma 25(10):1227–1240

    Article  PubMed  CAS  Google Scholar 

  40. Haghighi SS et al (1996) Suppression of spinal and cortical somatosensory evoked potentials by desflurane anesthesia. J Neurosurg Anesthesiol 8(2):148–153

    Article  PubMed  CAS  Google Scholar 

  41. Marcus MA et al (1997) Spinal somatosensory evoked potentials after epidural isoproterenol in awake sheep. Can J Anaesth 44(1):85–89

    Article  PubMed  CAS  Google Scholar 

  42. Peterson DO et al (1986) Effects of halothane, enflurane, isoflurane, and nitrous oxide on somatosensory evoked potentials in humans. Anesthesiology 65(1):35–40

    Article  PubMed  CAS  Google Scholar 

  43. Solenkova AV et al (2000) [Epidural anesthesia in surgical interventions on the spine and spinal cord. II. Effects of epidural anesthesia on somatosensory evoked potentials]. Anesteziol Reanimatol 4:32–38

    PubMed  Google Scholar 

  44. Eidelberg E, Woodbury CM (1972) Apparent redundancy in the somatosensory system in monkeys. Exp Neurol 37(3):573–581

    Article  PubMed  CAS  Google Scholar 

  45. Handwerker HO, Zimmermann M (1972) Cortical evoked responses upon selective stimulations of cutaneous group 3 fibers and the mediating spinal pathways. Brain Res 36(2):437–440

    Article  PubMed  CAS  Google Scholar 

  46. Norrsell U, Wolpow ER (1966) An evoked potential study of different pathways from the hindlimb to the somatosensory areas in the cat. Acta Physiol Scand 66(1):19–33

    Article  PubMed  CAS  Google Scholar 

  47. Yamada K et al (2008) Modulation of the secondary injury process after spinal cord injury in Bach1-deficient mice by heme oxygenase-1. J Neurosurg Spine 9(6):611–620

    Article  PubMed  Google Scholar 

  48. Cizkova D et al (2007) Functional recovery in rats with ischemic paraplegia after spinal grafting of human spinal stem cells. Neuroscience 147(2):546–560

    Article  PubMed  CAS  Google Scholar 

  49. Fukuda S (2006) [Somatosensory evoked potential]. Masui 55(3):280–293

    PubMed  Google Scholar 

  50. Janusz MT et al (1997) Experimental use of somatosensory evoked potential for intraoperative identification of spinal cord blood supply. J Invest Surg 10(4):195–203

    Article  PubMed  CAS  Google Scholar 

  51. Lips J et al (2002) The role of transcranial motor evoked potentials in predicting neurologic and histopathologic outcome after experimental spinal cord ischemia. Anesthesiology 97(1):183–191

    Article  PubMed  Google Scholar 

  52. Qayumi AK et al (1997) Animal model for investigation of spinal cord injury caused by aortic cross-clamping. J Invest Surg 10(1–2):47–52

    Article  PubMed  CAS  Google Scholar 

  53. Iuliano BA et al (1994) Motor and somatosensory evoked potentials in mice infected with Theiler’s murine encephalomyelitis virus. J Neurol Sci 123(1–2):186–194

    Article  PubMed  CAS  Google Scholar 

  54. Mi S et al (2005) LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 8(6):745–751

    Article  PubMed  CAS  Google Scholar 

  55. Mi S et al (2008) LINGO-1 and its role in CNS repair. Int J Biochem Cell Biol 40(10):1971–1978

    Article  PubMed  CAS  Google Scholar 

  56. Nie DY et al (2006) Oligodendrocytes regulate formation of nodes of Ranvier via the recognition molecule OMgp. Neuron Glia Biol 2:151–164

    Article  PubMed  Google Scholar 

  57. Abe Y et al (2003) Decreased neural damage after spinal cord injury in tPA-deficient mice. J Neurotrauma 20(1):43–57

    Article  PubMed  Google Scholar 

  58. Cohen LG et al (1990) Effects of coil design on delivery of focal magnetic stimulation. Technical considerations. Electroencephalogr Clin Neurophysiol 75(4):350–357

    Article  PubMed  CAS  Google Scholar 

  59. Claus D, Weitbrecht W, Neundorfer B (1985) Pentobarbital: the influence on somatosensory conduction in the rat. In: Schramm J, Jones SJ (eds) Spinal cord monitoring. Springer, Berlin, pp 90–94

    Chapter  Google Scholar 

  60. Hadi B et al (2000) Lasting paraplegia caused by loss of lumbar spinal cord interneurons in rats: no direct correlation with motor neuron loss. J Neurosurg 93(2 Suppl):266–275

    PubMed  CAS  Google Scholar 

  61. Magnuson DS et al (1999) Comparing deficits following excitotoxic and contusion injuries in the thoracic and lumbar spinal cord of the adult rat. Exp Neurol 156(1):191–204

    Article  PubMed  CAS  Google Scholar 

  62. Cao Q et al (2005) Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J Neurosci 25(30):6947–6957

    Article  PubMed  CAS  Google Scholar 

  63. Loy DN et al (2002) Functional redundancy of ventral spinal locomotor pathways. J Neurosci 22(1):315–323

    PubMed  CAS  Google Scholar 

  64. Cusick JF et al (1979) Spinal cord evaluation by cortical evoked responses. Arch Neurol 36(3):140–143

    Article  PubMed  CAS  Google Scholar 

  65. Powers SK et al (1982) Spinal cord pathways mediating somatosensory evoked potentials. J Neurosurg 57(4):472–482

    Article  PubMed  CAS  Google Scholar 

  66. Onifer SM et al (2007) Loss and spontaneous recovery of forelimb evoked potentials in both the adult rat cuneate nucleus and somatosensory cortex following contusive cervical spinal cord injury. Exp Neurol 207(2):238–247

    Article  PubMed  Google Scholar 

  67. Kimura T et al (2008) Impulse propagation along thalamocortical fibers can be detected magnetically outside the human brain. J Neurosci 28(47):12535–12538

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher B. Shields .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhang, Y.P., Shields, L.B.E., Shields, C.B. (2012). Electrophysiological Assessment of Spinal Cord Function on Rodents Using tcMMEP and SSEP. In: Chen, J., Xu, XM., Xu, Z., Zhang, J. (eds) Animal Models of Acute Neurological Injuries II. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-61779-782-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-782-8_43

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-781-1

  • Online ISBN: 978-1-61779-782-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics