Skip to main content

Assessments of Gliogenesis After Spinal Cord Injury

  • Protocol
  • First Online:
Animal Models of Acute Neurological Injuries II

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Spinal cord injury (SCI) results in a large proliferative response that serves to restore homeostatis and replenish cellular deficits. Postinjury repair and recovery can be interrogated as a function of the cell fates adopted by progenitors within the lesion. Administration of bromodeoxyuridine (BrdU) (by ip injection) and/or a recombinant retrovirus (by intraspinal injection) is used routinely to label progenitors in an injured spinal cord. In combination with immunofluorescence, confocal microscopy assesses the progeny of labeled-progenitors. Colocalization of phenotypic markers with BrdU or retroviral-reporters is used to determine the differentiation profile of progenitors to assess gliogenesis after SCI. This chapter introduces a brief history of labeling proliferative cells, required materials and tools to phenotype progeny, typical procedures, and variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bunge RP, Puckett WR, Hiester ED (1997) Observations on the pathology of several types of human spinal cord injury, with emphasis on the astrocyte response to penetrating injuries. Adv Neurol 72:305

    PubMed  CAS  Google Scholar 

  2. Reier PJ, Houle JD (1988) The glial scar: its bearing on axonal elongation and transplantation approaches to CNS repair. Adv Neurol 47:87

    PubMed  CAS  Google Scholar 

  3. Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377

    Article  PubMed  CAS  Google Scholar 

  4. Fitch MT, Silver J (1997) Glial cell extracellular matrix: boundaries for axonal growth in development and regeneration. Cell Tissue Res 290: 379

    Article  PubMed  CAS  Google Scholar 

  5. Shihabuddin LS, Ray J, Gage FH (1997) FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord. Exp Neurol 148: 577

    Article  PubMed  CAS  Google Scholar 

  6. Weiss S et al (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599

    PubMed  CAS  Google Scholar 

  7. Shihabuddin LS, Horner PJ, Ray J, Gage FH (2000) Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci 20:8727

    PubMed  CAS  Google Scholar 

  8. Yamamoto S, Yamamoto N, Kitamura T, Nakamura K, Nakafuku M (2001) Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord. Exp Neurol 172:115

    Article  PubMed  CAS  Google Scholar 

  9. Frisen J, Johansson CB, Torok C, Risling M, Lendahl U (1995) Rapid, widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. J Cell Biol 131:453

    Article  PubMed  CAS  Google Scholar 

  10. McTigue DM, Wei P, Stokes BT (2001) Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J Neurosci 21:3392

    PubMed  CAS  Google Scholar 

  11. Levine JM (1994) Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J Neurosci 14:4716

    PubMed  CAS  Google Scholar 

  12. Horky LL, Galimi F, Gage FH, Horner PJ (2006) Fate of endogenous stem/progenitor cells following spinal cord injury. J Comp Neurol 498:525

    Article  PubMed  Google Scholar 

  13. Sellers DL, Maris DO, Horner PJ (2009) Postinjury niches induce temporal shifts in progenitor fates to direct lesion repair after spinal cord injury. J Neurosci 29:6722

    Article  PubMed  CAS  Google Scholar 

  14. Hoshino T et al (1989) Prognostic implications of the bromodeoxyuridine labeling index of human gliomas. J Neurosurg 71:335

    Article  PubMed  CAS  Google Scholar 

  15. Struikmans H et al (1997) S-phase fraction, 5-bromo-2′-deoxy-uridine labelling index, duration of S-phase, potential doubling time, and DNA index in benign and malignant brain tumors. Radiat Oncol Investig 5:170

    Article  PubMed  CAS  Google Scholar 

  16. Nowakowski RS, Lewin SB, Miller MW (1989) Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol 18:311

    Article  PubMed  CAS  Google Scholar 

  17. Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027

    PubMed  CAS  Google Scholar 

  18. Kriss JP, Maruyama Y, Tung LA, Bond SB, Revesz L (1963) The fate of 5-bromodeoxyuridine, 5-bromodeoxycytidine, and 5-iododeoxycytidine in man. Cancer Res 23:260

    PubMed  CAS  Google Scholar 

  19. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    PubMed  CAS  Google Scholar 

  20. Cepko CL et al (1998) Lineage analysis using retroviral vectors. Methods 14:393

    Article  PubMed  CAS  Google Scholar 

  21. Golden JA, Fields-Berry SC, Cepko CL (1995) Construction and characterization of a highly complex retroviral library for lineage analysis. Proc Natl Acad Sci U S A 92:5704–5708

    Article  PubMed  CAS  Google Scholar 

  22. Mouton PR (2002) Principles and practices of unbiased stereology: an introduction for bioscientists. The John Hopkins University Press, Baltimore, p 214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drew L. Sellers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sellers, D.L., Horner, P.J. (2012). Assessments of Gliogenesis After Spinal Cord Injury. In: Chen, J., Xu, XM., Xu, Z., Zhang, J. (eds) Animal Models of Acute Neurological Injuries II. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-61779-782-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-782-8_40

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-781-1

  • Online ISBN: 978-1-61779-782-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics