Skip to main content

Random Amplified Marker Technique for Plants Rich in Polyphenols

  • Protocol
  • First Online:
Plant DNA Fingerprinting and Barcoding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 862))

  • 2447 Accesses

Abstract

More than 10,000 publications using the random amplified polymorphic DNA (RAPD) or related arbitrary marker techniques have been published in two decades of its inception in 1990. Despite extensive use, RAPD technique has also attracted some criticisms, mainly for lack of reproducibility. In the light of its widespread applications, the objective of this chapter is to (1) provide a protocol for RAPD assay, (2) identify the potential factors affecting the optimization of the RAPD assays, and (3) provide proper statistical analysis to avoid false positives. It is suggested that after proper optimization, the RAPD is a reliable, sensitive, and reproducible assay having the potential to detect a wide range of DNA variations. Analyses of the relevant fragments generated in RAPD profile allow not only to identify some of the molecular events implicated in the genomic instability but also to discover genes playing key roles in genetic evolution and gene mapping. RAPD markers will continue to be boon for genetic studies of those organisms where yet no sequence information or scanty information is available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV(1990)DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18:6531–35

    Google Scholar 

  2. Lacerda DR, Acedo MDP, Filho JPL, Lovato MB (2002). A técnica de RAPD: uma ferramenta molecular em estudos de conservação de plantas. Lundiana 3:87–92.

    Google Scholar 

  3. Magalhães M, Martinez RA, Gaiotto FA (2007). Genetic diversity of Litopenaeus vannamei cultivated in Bahia State, Brazil. Pesq. Agropec. Bras. 42:1131–1136.

    Article  Google Scholar 

  4. Brahmane MP, Mitra K and Mishra SS (2008). RAPD fingerprinting of the ornamental fish Badis badis (Hamilton 1822) and Dario dario (Kullander and Britz, 2002) (Perciformes, Badidae) from West Bengal, India. Genet. Mol. Biol. 31:789–792.

    Article  CAS  Google Scholar 

  5. Dutra NC, Telles MP, Dutra DL,Silva Junior NJ (2008). Genetic diversity in populations of the viper Bothrops moojeni Hoge, 1966 in Central Brazil using RAPD markers. Genet. Mol. Res. 7:603–613

    Article  PubMed  CAS  Google Scholar 

  6. Soares TN, Chaves LJ, de Campos Telles MP, Diniz-Filho JA, et al. (2008). Landscape conservation genetics of Dipteryx alata (“baru” tree: Fabaceae) from Cerrado region of central Brazil. Genetica 132:9–19.

    Article  PubMed  CAS  Google Scholar 

  7. Hadrys H, Balick M, Schierwater B (1992) Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecology 7:55–63.

    Google Scholar 

  8. Bagley M J, Anderson SL, May B (2001) Choice of methodology for assessing genetic impacts of environmental stressors: polymorphism and reproducibility of RAPD and AFLP fingerprints. Ecotoxicology 10:239–244

    Article  PubMed  CAS  Google Scholar 

  9. Williams JGK, Hanafey MK, Rafalski JA, Tingey SV(1993). Genetic analysis using random amplified polymorphic DNA markers. Methods Enzymol 218:704–40.

    Article  PubMed  CAS  Google Scholar 

  10. Fritsch P, Riseberg L H (1992) High outcrossing rates maintain male and hermaphrodite individuals in populations of the flowering plant. Datisca glomerata Nature 359:633–36

    Article  Google Scholar 

  11. Hallden C, Hansen M, Nilsson NO, Hjerdin A, Sall T (1996) Competition as a source of errors in RAPD analysis. Theor Appl Genet 93:1185–1192

    Article  CAS  Google Scholar 

  12. Reineke A, Karlovsky P, Zebitz CPW (1999) Suppression of randomly primed polymerase chain reaction products(random amplified polymorphic DNA in heterozygous diploids. Mol Ecol 8:1449–55.

    Article  PubMed  CAS  Google Scholar 

  13. Caetano-Anollés G, Bassam BJ, Gresshoff PM (1992) DNA fingerprinting MAAPing out a RAPD redefinition?BI/Technology 10:937

    Google Scholar 

  14. Ayliffe MA, Lawrence GJ, Ellis JG, Pryor AJ (1994) Heteroduplex molecules formed between allelic sequences cause nonparental RAPD bands. Nucleic Acids Res. 22: 1632–36.

    Article  PubMed  CAS  Google Scholar 

  15. Hunt GJ, Page Jr RE (1992). Patterns of inheritance with RAPD molecular markers reveal novel types of polymorphism in the honey bee. Theor. Appl.Genet. 85:15–20.

    Article  CAS  Google Scholar 

  16. Riedy MF, Hamilton III WJ, Aquadro CF (1992) Excess of non-parental bands in offspring from known primate pedigrees assayed using RAPD PCR. Nucl Acids Res. 20:918.

    Article  PubMed  CAS  Google Scholar 

  17. Scott MP, Haymes KM, Williams SM (1992) Parentage analysis using RAPD PCR Nucleic Acid Research20:5493.

    Google Scholar 

  18. Heun M, Helentjaris T (1993) Inheritance of RAPDs in F1 hybrids of corn. Theor. Appl. Genet. 85:961–968.

    Article  CAS  Google Scholar 

  19. Aagard JE, Vollmer SS, Sorenson FC, Strauss SH (1995) Mitochondrial DNA products among RAPD profiles are frequent and strongly differentiated between races of Douglas-fir Mol Ecol4:441–447.

    Google Scholar 

  20. Khanuja SPS, Shasany AK, Darokar MP, Kumar S(1999) Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. Plant Molecular Biology Reporter 17:1–7

    Article  Google Scholar 

  21. Levi A, Rowland LJ, Hartung JS (1993) Production of reliable randomly amplified polymorphic DNA(RAPD) markers from DNA of woody plants.HortScience36:1096–101.

    Google Scholar 

  22. Gelfand D H (1988) In Erlich, H. A. (ed.) PCR Technology. p.17. Stockton Press, N

    Google Scholar 

  23. Wood WI, J GitschierJ, Lasky LA, Lawn RM (1985) Base composition-independent hybridization in tetramethylammonium chloride: a method for oligonucleotide screening of highly complex gene libraries. Proc Natl Acad Sci U S A. 82(6):1585–88

    Article  PubMed  CAS  Google Scholar 

  24. Seela F, Driller H (1989) Alternating d(G-C)3 and d(C-G)3 hexanucleotides containing 7-deaza-20-deoxyguanosine or 8-aza-7-deaza-20-deoxyguanosine in place of dG. Nucleic Acids Res.17:901–10.

    Article  PubMed  CAS  Google Scholar 

  25. Thein SL, Wallace B (1986)The use of synthetic oligonucleotides as specific hybridization probes in the diagnosis of genetic disorders in Human Genetic Diseases-A Practical approach, Davies KE Ed, IRL Press Oxford UKpp33-50

    Google Scholar 

  26. Pérez T, Albornoz J,Domínguez A (1998) An evaluation of RAPD fragment reproducibility and nature. Molecular Ecology 7:1347–57

    Article  PubMed  Google Scholar 

  27. Rabouam C, Comes AM, Bretagnolle V, Humbert JF, et al. (1999). Features of DNA fragments obtained by random amplified polymorphic DNA (RAPD) assays. Mol. Ecol. 8: 493–503.

    Article  PubMed  CAS  Google Scholar 

  28. Pérez T, Albornoz J, Domínguez A (1998) An evaluation of RAPD fragment reproducibility and nature. Molecular Ecology7:1347-1357

    Article  PubMed  Google Scholar 

  29. Lynch M (1990) The similarity index and DNA fingerprinting. Molecular Biology and Evolution, 7, 478–484.

    PubMed  CAS  Google Scholar 

  30. Lamboy WF (1994) Computing Genetic Similarity Coefficients from RAPD Data: correcting for the effects of PCR artifacts caused by variation in experimental conditions. PCR methods and Applications 4:38–43.

    Google Scholar 

  31. Ramos JR, M.P.C. Telles, J.A.F. Diniz-Filho, T.N. Soares, D.B. Melo and G. Oliveira (2008).Optimizing reproducibility evaluation for random amplified polymorphic DNA markers Genetics and Molecular Research 7: 1384–91

    Article  PubMed  CAS  Google Scholar 

  32. Russel SJ and Norving P (2004). Inteligência Artificial. Elsevier, Rio de Janeiro

    Google Scholar 

  33. Possingham H, Ball I and Andelman S (2000). Mathematical Methods for Identifying Representative Reserve Networks. In: Quantitative Methods for Conservation Biology (Ferson S and Burgman M, eds.). Springer-Verlag, New York, 291–306.

    Chapter  Google Scholar 

  34. Holsinger KE and Lewis PO (2003). HICKORY v. 1.0. Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs. Available at (http://www.eeb.uconn.edu/).

  35. Yeh FC and Boyle TJB (1997). Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg. J. Bot. 129: 157. Popgene version 1.32. Available at (http://www.ualberta.ca/∼fyeh/download.htm). Accessed March 2007

  36. Rohlf, F.J.: NTSYS-PC: Numerical Taxonomy and Multivariate Analysis System. Version 2.11 T. - Exeter Software,Setauket 2000

    Google Scholar 

  37. Perrier,.Jacquemoud-Collet,J.P.(2006).DARwin software http://darwin.cirad.fr/darwin http://  www.powermarker.net

    Google Scholar 

Download references

Acknowledgments

We thankfully acknowledge the encouragement of Director, CIMAP and constant financial support by Council of Scientific and Industrial Research and Department of Biotechnology. The help of co-authors in our cited work is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Kumar Shasany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jhang, T., Shasany, A.K. (2012). Random Amplified Marker Technique for Plants Rich in Polyphenols. In: Sucher, N., Hennell, J., Carles, M. (eds) Plant DNA Fingerprinting and Barcoding. Methods in Molecular Biology, vol 862. Humana Press. https://doi.org/10.1007/978-1-61779-609-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-609-8_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-608-1

  • Online ISBN: 978-1-61779-609-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics