Skip to main content

Study of Amyloids Using Yeast

  • Protocol
  • First Online:
Amyloid Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 849))

Abstract

We detail some of the genetic, biochemical, and physical methods useful in studying amyloids in yeast, particularly the yeast prions. These methods include cytoduction (cytoplasmic mixing), infection of cells with prion amyloids, use of green fluorescent protein fusions with amyloid-forming proteins for cytology, protein purification and amyloid formation, and electron microscopy of filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

USA:

Ureidosuccinic acid

SD:

Synthetic dextrose (medium)

SC-Ade:

Synthetic complete minus adenine (medium)

YPAD:

Yeast extract peptone adenine dextrose (medium)

YPG:

Yeast extract peptone glycerol (medium)

GFP:

Green fluorescent protein

NiNTA:

Nickel column

TCA:

Trichloroacetic acid

TEM:

Transmission electron microscopy

TMV:

Tobacco mosaic virus

References

  1. Gorkovskii, A. A., Bezsonov, E. E., Plotnikova, T. A., Kalebina, T. S., and Kulaev, I. S. (2009) Revealing of Saccharomyces cerevisiae yeast cell wall proteins capable of binding thioflavin T, a fluorescent dye specifically interacting with amyloid fibrils, Biochemistry (Mosc) 74, 1219–1224.

    Article  CAS  Google Scholar 

  2. Amberg, D. C., Burke, D. J., and Strathern, J. N. (2005) Methods in yeast genetics: a Cold Spring Harbor Laboratory Course Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  3. Guthrie, C., and Fink, G. R., (Eds.) (2002) Methods in Enzymology: Guide to yeast genetics and molecular cell biology, part B, Vol. 350, Academic Press.

    Google Scholar 

  4. Guthrie, C., and Fink, G. R., (Eds.) (2004) Guide to yeast genetics and molecular biology, part A, Vol. 194, Academic Press.

    Google Scholar 

  5. Wetzel, R., (Ed.) (1999) Amyloid, Prions, and other protein aggregates, Vol. 309, Academic Press.

    Google Scholar 

  6. Wetzel, R., and Kheterpal, I., (Eds.) (2006) Amyloid, Prions, and other protein aggregates, Part B, Vol. 412, Academic Press.

    Google Scholar 

  7. Masison, D. C., (Ed.) (2006) Identification, analysis and characterization of fungal prions, Vol. 39(1).

    Google Scholar 

  8. Lacroute, F. (1971) Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast, J. Bacteriol. 106, 519–522.

    PubMed  CAS  Google Scholar 

  9. Aigle, M., and Lacroute, F. (1975) Genetical aspects of (URE3), a non-Mendelian, cytoplasmically inherited mutation in yeast, Molec. Gen. Genet. 136, 327–335.

    Article  PubMed  CAS  Google Scholar 

  10. Cox, B. S. (1965) PSI, a cytoplasmic suppressor of super-suppressor in yeast, Heredity 20, 505–521.

    Article  Google Scholar 

  11. Wickner, R. B. (1994) (URE3) as an altered URE2 protein: evidence for a prion analog in S. cerevisiae, Science 264, 566–569.

    Article  PubMed  CAS  Google Scholar 

  12. Goldring, E. S., Grossman, L. I., Krupnick, D., Cryer, D. R., and Marmur, J. (1970) The petite mutation in yeast: loss of mitochondrial DNA during induction of petites with ethidium bromide, J. Mol. Biol. 52, 323–335.

    Article  PubMed  CAS  Google Scholar 

  13. Wickner, R. B. (1974) “Killer character: of Saccharomyces cerevisiae: curing by growth at elevated temperature,” J Bacteriol 117, 1356–1357.

    PubMed  CAS  Google Scholar 

  14. Sommer, S. S., and Wickner, R. B. (1982) Co-curing of plasmids affecting killer double-stranded RNAs of Saccharomyces cerevisiae: (HOK), (NEX), and the abundance of L are related and further evidence that M1 requires L, J Bacteriol 150, 545–551.

    PubMed  CAS  Google Scholar 

  15. Singh, A. C., Helms, C., and Sherman, F. (1979) Mutation of the non-Mendelian suppressor ψ  +  in yeast by hypertonic media, Proc. Natl. Acad. Sci. USA 76, 1952–1956.

    Article  PubMed  CAS  Google Scholar 

  16. Tuite, M. F., Mundy, C. R., and Cox, B. S. (1981) Agents that cause a high frequency of genetic change from (psi+) to (psi-) in Saccharomyces cerevisiae, Genetics 98, 691–711.

    PubMed  CAS  Google Scholar 

  17. Chernoff, Y. O., Derkach, I. L., and Inge-Vechtomov, S. G. (1993) Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae, Curr. Genet. 24, 268–270.

    Article  PubMed  CAS  Google Scholar 

  18. Rizet, G. (1952) Les phenomenes de barrage chez Podospora anserina: analyse genetique des barrages entre les souches s et S, Rev. Cytol. Biol. Veg. 13, 51–92.

    Google Scholar 

  19. Coustou, V., Deleu, C., Saupe, S., and Begueret, J. (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog, Proc. Natl. Acad. Sci. USA 94, 9773–9778.

    Article  PubMed  CAS  Google Scholar 

  20. Derkatch, I. L., Bradley, M. E., Zhou, P., Chernoff, Y. O., and Liebman, S. W. (1997) Genetic and environmental factors affecting the de novo appearance of the (PSI+) prion in Saccharomyces cerevisiae, Genetics 147, 507–519.

    PubMed  CAS  Google Scholar 

  21. Sondheimer, N., and Lindquist, S. (2000) Rnq1: an epigenetic modifier of protein function in yeast, Molec. Cell 5, 163–172.

    Article  PubMed  CAS  Google Scholar 

  22. Derkatch, I. L., Bradley, M. E., Hong, J. Y., and Liebman, S. W. (2001) Prions affect the appearance of other prions: the story of (PIN), Cell 106, 171–182.

    Article  PubMed  CAS  Google Scholar 

  23. Osherovich, L. Z., and Weissman, J. S. (2001) Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI+] prion, Cell 106, 183–194.

    Article  PubMed  CAS  Google Scholar 

  24. Masison, D. C., and Wickner, R. B. (1995) Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells, Science 270, 93–95.

    Article  PubMed  CAS  Google Scholar 

  25. TerAvanesyan, A., Dagkesamanskaya, A. R., Kushnirov, V. V., and Smirnov, V. N. (1994) The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [PSI+] in the yeast Saccharomyces cerevisiae, Genetics 137, 671–676.

    CAS  Google Scholar 

  26. Du, Z., Park, K.-W., Yu, H., Fan, Q., and Li, L. (2008) Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae, Nat. Genet. 40, 460–465.

    Article  PubMed  CAS  Google Scholar 

  27. Patel, B. K., Gavin-Smyth, J., and Liebman, S. W. (2009) The yeast global transcriptional ­co-repressor protein Cyc8 can propagate as a prion, Nat. Cell Biol. 11, 344–349.

    Article  PubMed  CAS  Google Scholar 

  28. Nemecek, J., Nakayashiki, T., and Wickner, R. B. (2009) A prion of yeast metacaspase homolog (Mca1p) detected by a genetic screen, Proc. Natl. Acad. Sci. USA 106, 1892–1896.

    Article  PubMed  CAS  Google Scholar 

  29. Alberti, S., Halfmann, R., King, O., Kapila, A., and Lindquist, S. (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins, Cell 137, 146–158.

    Article  PubMed  CAS  Google Scholar 

  30. Ross, E. D., Baxa, U., and Wickner, R. B. (2004) Scrambled prion domains form prions and amyloid, Mol Cell Biol 24, 7206–7213.

    Article  PubMed  CAS  Google Scholar 

  31. Ross, E. D., Edskes, H. K., Terry, M. J., and Wickner, R. B. (2005) Primary sequence independence for prion formation, Proc Natl Acad Sci USA 102, 12825–12830.

    Article  PubMed  CAS  Google Scholar 

  32. Toombs, J. A., McCarty, B. R., and Ross, E. D. (2010) Compositional determinants of prion formation in yeast, Mol. Cell. Biol. 30, 319–332.

    Article  PubMed  CAS  Google Scholar 

  33. Chiti, F., and Dobson, C. M. (2006) Protein folding, functional amyloid and human disease, Annu. Rev. Biochem. 75, 333–366.

    Article  PubMed  CAS  Google Scholar 

  34. Masison, D. C., Maddelein, M.-L., and Wickner, R. B. (1997) The prion model for (URE3) of yeast: spontaneous generation and requirements for propagation, Proc. Natl. Acad. Sci. USA 94, 12503-12508.

    Article  PubMed  CAS  Google Scholar 

  35. Kochneva-Pervukhova, N. V., Poznyakovski, A. I., Smirnov, V. N., and Ter-Avanesyan, M. D. (1998) C-terminal truncation of the Sup35 protein increases the frequency of de novo generation of a prion-based (psi+) determinant in Saccharmyces cerevisiae, Curr. Genet. 34, 146–151.

    Article  PubMed  CAS  Google Scholar 

  36. Edskes, H. K., Gray, V. T., and Wickner, R. B. (1999) The (URE3) prion is an aggregated form of Ure2p that can be cured by overexpression of Ure2p fragments, Proc. Natl. Acad. Sci. USA 96, 1498 – 1503.

    Article  PubMed  CAS  Google Scholar 

  37. Sherman, F. (1991) Getting started with yeast, in Guide to yeast genetics and molecular biology (Guthrie, C., and Fink, G. R., Eds.), pp 3–21, Academic Press, San Diego.

    Google Scholar 

  38. Cooper, T. G. (2002) Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to th GATA factors: connecting the dots, FEMS Microbiol. Revs. 26, 223–238.

    Article  CAS  Google Scholar 

  39. Magasanik, B., and Kaiser, C. A. (2002) Nitrogen regulation in Saccharomyces cerevisiae, Gene 290, 1–18.

    Article  PubMed  CAS  Google Scholar 

  40. Turoscy, V., and Cooper, T. G. (1987) Ureidosuccinate is transported by the allantoate transport system in Saccharomyces cerevisiae, J. Bacteriol. 169, 2598–2600.

    PubMed  CAS  Google Scholar 

  41. Rai, R., Genbauffe, F., Lea, H. Z., and Cooper, T. G. (1987) Transcriptional regulation of the DAL5 gene in Saccharomyces cerevisiae, J. Bacteriol. 169, 3521–3524.

    PubMed  CAS  Google Scholar 

  42. Brachmann, A., Baxa, U., and Wickner, R. B. (2005) Prion generation in vitro: amyloid of Ure2p is infectious, Embo J 24, 3082–3092.

    Article  PubMed  CAS  Google Scholar 

  43. Chernoff, Y. O., Lindquist, S. L., Ono, B.-I., Inge-Vechtomov, S. G., and Liebman, S. W. (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor (PSI+), Science 268, 880–884.

    Article  PubMed  CAS  Google Scholar 

  44. Conde, J., and Fink, G. R. (1976) A mutant of Saccharomyces cerevisiae defective for nuclear fusion, Proc. Natl. Acad. Sci. USA 73, 3651–3655.

    Article  PubMed  CAS  Google Scholar 

  45. Tuite, M. F., Mundy, C. R. and Cox, B. S. (1981) Agents that cause a high frequency of genetic change from (psi+) to (psi-) in Saccharomyces cerevisiae. Genetics 98 691–711.

    PubMed  CAS  Google Scholar 

  46. Jung, G., and Masison, D. C. (2001) Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possible explanation for its effect in curing yeast prions, Curr. Microbiol. 43, 7–10.

    Article  PubMed  CAS  Google Scholar 

  47. Ferreira, P. C., Ness, F., Edwards, S. R., Cox, B. S., and Tuite, M. F. (2001) The elimination of the yeast (psi+) prion by guanidine hydrochloride is the result of Hsp104 inactivation, Mol Microbiol 40, 1357–1369.

    Article  PubMed  CAS  Google Scholar 

  48. Jung, G., Jones, G., and Masison, D. C. (2002) Amino acid residue 184 of yeast Hsp104 chaperone is critical for prion-curing by guanidine, prion propagation, and thermotolerance, Proc. Natl. Acad. Sci. USA 99, 9936–9941.

    Article  PubMed  CAS  Google Scholar 

  49. Derkatch, I. L., Bradley, M. E., Masse, S. V., Zadorsky, S. P., Polozkov, G. V., Inge-Vechtomov, S. G., and Liebman, S. W. (2000) Dependence and independence of (PSI+) and [PIN+]: a two-prion system in yeast?, Embo J 19, 1942–1952.

    Article  PubMed  CAS  Google Scholar 

  50. Cox, B. S., Ness, F., and Tuite, M. F. (2003) Analysis of the generation and segregation of propagons: entities that propagate the (PSI+) prion in yeast, Genetics 165, 23–33.

    PubMed  CAS  Google Scholar 

  51. Douglas, P. M., Treusch, S., Ren, H. Y., Halfmann, R., Duennwald, M. L., Lindquist, S., and Cyr, D. (2008) Chaperone-dependent amyloid assembly protects cells from prion toxicity, Proc. Natl. Acad. Sci. USA 105, 7206–7211.

    Article  PubMed  CAS  Google Scholar 

  52. Pieri, L., Bucciantini, M., Nosi, D., Formigli, L., Savistchenko, J., Melki, R., and Stefani, M. (2006) The yeast prion Ure2p native-like assemblies are toxic to mammalian cells regardless of their aggregation state, J. Biol. Chem. 281, 15337–15344.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang, C., Jackson, A. P., Zhang, Z. R., Han, Y., Yu, S., Q., H. R., and Perrett, S. (2010) Amyloid-like aggregates of the yeast prion protein Ure2 enter vertbrate cells by specific endocytic pathways and induce apoptosis, Plos One 5, e12529.

    Google Scholar 

  54. Krammer, C., Suhre, M. H., Kremmer, E., Diemer, C., Hess, S., Schatzl, H. M., Scheibel, T., and Vorberg, I. (2008) Prion protein/protein interactions: fusion with yeast Sup35p-NM modulates cytosolic PrP aggregation in mammalian cells, FASEB J. 22, 762–773.

    Article  PubMed  CAS  Google Scholar 

  55. Krammer, C., Kryndushkin, D., Suhre, M. H., Kremmer, E., Hofmann, A., Pfeifer, A., Scheibel, T., Wickner, R. B., Schatzl, H. M., and Vorberg, I. (2009) The yeast Sup35NM domain propagates as a prion in mammalian cells, Proc. Natl. Acad. Sci. USA 106, 462–467.

    Article  PubMed  CAS  Google Scholar 

  56. Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., D.A., Z., and Tsien, R. Y. (2002) A monomeric red fluorescent protein, Proc. Natl. Acad. Sci. USA 99, 7877–7882.

    Google Scholar 

  57. Cormack, B. P., Bertram, G., Egerton, M., Gow, N. A., Falkow, S., and Brown, A. J. (1997) Yeast-enhanced green flourescent protein (yEGFP) a reporter of gene expression in Candida albicans, Microbiology 143, 303–311.

    Article  PubMed  CAS  Google Scholar 

  58. Sheff, M. A., and Thorn, K. S. (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae, Yeast 21, 661–670.

    Article  PubMed  CAS  Google Scholar 

  59. Song, Y., Wu, Y. X., Jung, G., Tutar, Y., Eisenberg, E., Greene, L. E., and Masison, D. C. (2005) Role for Hsp70 chaperone in Saccharomyces cerevisiae prion seed replication, Eukary. Cell 4, 289–297.

    CAS  Google Scholar 

  60. Satpute-Krishnan, P., and Serio, T. R. (2005) Prion protein remodelling confers an immediate phenotypic switch, Nature 437, 262–265.

    Article  PubMed  CAS  Google Scholar 

  61. Kawai-Noma, S., Ayano, S., Pack, C. G., Kinjo, M., Yoshida, M., Yasuda, K., and Taguchi, H. (2006) Dynamics of yeast prion aggregates in single living cells, Genes Cells 11, 1085–1096.

    Article  PubMed  CAS  Google Scholar 

  62. Patino, M. M., Liu, J.-J., Glover, J. R., and Lindquist, S. (1996) Support for the prion hypothesis for inheritance of a phenotypic trait in yeast, Science 273, 622–626.

    Article  PubMed  CAS  Google Scholar 

  63. Edskes, H. K., and Wickner, R. B. (2002) Conservation of a portion of the S. cerevisiae Ure2p prion domain that interacts with the full - length protein, Proc. Natl. Acad. Sci. USA 99 (Suppl. 4), 16384–16391.

    Google Scholar 

  64. Zhou, P., Derkatch, I. L., and Liebman, S. W. (2001) The relationship between visible intracellular aggregates that appear after overexpression of Sup35 and the yeast prion-like elements (PSI+) and (PIN+), Mol Microbiol 39, 37–46.

    Article  PubMed  CAS  Google Scholar 

  65. Mathur, V., Taneja, V., Sun, Y., and Liebman, S. W. (2010) Analyzing the birth and propagation of two distinct prions, (PSI+) and (Het-s)(y), in yeast, Mol. Biol. Cell. 21, 1449–1461.

    Article  PubMed  CAS  Google Scholar 

  66. Speransky, V., Taylor, K. L., Edskes, H. K., Wickner, R. B., and Steven, A. (2001) Prion filament networks in (URE3) cells of Saccharomyces cerevisiae, J. Cell. Biol. 153, 1327–1335.

    Article  PubMed  CAS  Google Scholar 

  67. Kawai-Noma, S., Pack, C. G., Kojidani, T., Asakawa, H., Hiraoka, Y., Kinjo, M., Haraguchi, T., Taguchi, H., and Hirata, A. (2010) In vivo evidence for the fibrillar structures of Sup35 prions in yeast cells, J. Cell. Biol. 190, 223–231.

    Article  PubMed  CAS  Google Scholar 

  68. Santoso, A., Chien, P., Osherovich, L. Z., and Weissman, J. S. (2000) Molecular basis of a yeast prion species barrier, Cell 100, 277–288.

    Article  PubMed  CAS  Google Scholar 

  69. Derkatch, I. L., Uptain, S. M., Outeiro, T. F., Krishnan, R., Lindquist, S. L., and Liebman, S. W. (2004) Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the (PSI+) prion in yeast and aggregation of Sup35 in vitro, Proc Natl Acad Sci USA 101, 12934–12939.

    Article  PubMed  CAS  Google Scholar 

  70. Ganusova, E. E., Ozolins, L. N., Bhagat, S., Newnam, G. P., Wegrzyn, R. D., Sherman, M. Y., and Chernoff, Y. O. (2006) Modulation of prion formation, aggregation, and toxicity by the actin cytoskeleton in yeast, Mol. Cell. Biol. 26, 617–629.

    Article  PubMed  CAS  Google Scholar 

  71. Kryndushkin, D., Shewmaker, F., and Wickner, R. B. (2008) Curing of the (URE3) prion by Btn2p, a Batten disease-related protein, EMBO J. 27, 2725–2735.

    Article  PubMed  CAS  Google Scholar 

  72. Derdowski, A., Sindi, S. S., Klaips, C. L., DiSalvo, S., and Sero, T. R. (2010) A size threshold limits prion transmission and establishes phenotypic diversity, Science 330, 6 80–683.

    Article  Google Scholar 

  73. Wu, Y. X., Greene, L. E., Masison, D. C., and Eisenberg, E. (2005) Curing of yeast (PSI+) prion by guanidine inactivation of Hsp104 does not require cell division, Proc. Natl. Acad. Sci. USA 102, 12789–12794.

    Article  PubMed  CAS  Google Scholar 

  74. Satpute-Krishnan, P., Langseth, S. X., and Sero, T. R. (2007) Hsp104-dependent remodeling of prion complexes mediates protein-only inheritance, PLoS Biol. 5, e24.

    Article  PubMed  Google Scholar 

  75. Kawai-Noma, S., Pack, C. G., Tsuji, T., Kinjo, M., and Taguchi, H. (2009) Single mother-daughter pair analysis to clarify the diffusion properties of yeast prion Sup35 in guanidine HCl-treated (PSI) cells, Genes Cells 14, 1045–1054.

    Article  PubMed  CAS  Google Scholar 

  76. Blanco, F. J., Hess, S., Pannell, L. K., Rizzo, N. W., and Tycko, R. (2001) Solid-state NMR data support a helix-loop-helix structural model for the N-terminal half of HIV-1 Rev in fibrillar form, J. Mol. Biol. 313, 845–859.

    Article  PubMed  CAS  Google Scholar 

  77. Maddelein, M. L., Dos Reis, S., Duvezin-Caubet, S., Coulary-Salin, B., and Saupe, S. J. (2002) Amyloid aggregates of the HET-s prion protein are infectious, Proc Natl Acad Sci USA 99, 7402–7407.

    Article  PubMed  CAS  Google Scholar 

  78. King, C. Y., and Diaz-Avalos, R. (2004) Protein-only transmission of three yeast prion strains, Nature 428, 319–323.

    Article  PubMed  CAS  Google Scholar 

  79. Tanaka, M., Chien, P., Naber, N., Cooke, R., and Weissman, J. S. (2004) Conformational variations in an infectious protein determine prion strain differences, Nature 428, 323–328.

    Article  PubMed  CAS  Google Scholar 

  80. Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N., and Ter-Avanesyan, M. D. (1996) Propagation of the yeast prion-like (PSI+) determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor, EMBO J. 15, 3127–3134.

    PubMed  CAS  Google Scholar 

  81. Bagriantsev, S. N., Gracheva, E. O., Richmond, J. E., and Liebman, S. W. (2008) Variant-specific (PSI+) infection is transmitted by Sup35 polymers within (PSI+) aggregates with heterogeneous protein composition, Mol. Biol. Cell. 19, 2433–2443.

    Article  PubMed  CAS  Google Scholar 

  82. Kryndushkin, D. S., Alexandrov, I. M., Ter-Avanesyan, M. D., and Kushnirov, V. V. (2003) Yeast (PSI+) prion aggregates are formed by small Sup35 polymers fragmented by Hsp104, J. Biol. Chem. 278, 49636–49643.

    Article  PubMed  CAS  Google Scholar 

  83. Bagriantsev, S. N., Kushnirov, V. V., and Liebman, S. W. (2006) Analysis of amyloid aggregates using agarose gel electrophoresis, Methods Enzymol 412, 33–48.

    Article  PubMed  CAS  Google Scholar 

  84. Kushnirov, V. V., Alexandrov, I. M., Mitkevich, O. V., Shkundina, I. S., and Ter-Avanesyan, M. D. (2006) Purification and analysis of prion and amyloid aggregates, Methods 39, 50–55.

    Article  PubMed  CAS  Google Scholar 

  85. Tanaka, M., Collins, S. R., Toyama, B. H., and Weissman, J. S. (2006) The physical basis of how prion conformations determine strain phenotypes, Nature 442, 585–589.

    Article  PubMed  CAS  Google Scholar 

  86. Salnikova, A. B., Kryndushkin, D. S., Smirnov, V. N., Kushnirov, V. V., and Ter-Avanesyan, M. D. (2005) Nonsense suppression in yeast cells overproducing Sup35 (eRF3) is caused by its non-heritable amyloids, J. Biol. Chem. 280, 8808–8812.

    Article  PubMed  CAS  Google Scholar 

  87. Aebi, U., and Pollard, T. D. (1987) A glow discharge unit to render electron microscope grids and other surfaces hydrophilic, J. Electron Microsc. Tech. 7, 29–33.

    Article  PubMed  CAS  Google Scholar 

  88. Antzutkin, O. N., Balbach, J. J., Leapman, R. D., Rizzo, N. W., Reed, J., and Tycko, R. (2000) Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of beta-sheets in Alzheimer’s beta-amyloid fibrils, Proc. Natl. Acad. Sci. USA 97, 13045–13050.

    Article  PubMed  CAS  Google Scholar 

  89. Petkova, A. T., Ishii, Y., Balbach, J. J., Antzutkin, O. N., Leapman, R. D., Delaglio, F., and Tycko, R. (2002) A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR, Proc. Natl. Acad. Sci. USA 99, 16742–16747.

    Article  PubMed  CAS  Google Scholar 

  90. Petkova, A. T., Yau, W. M., and Tycko, R. (2006) Experimental constraints on quaternary structure in Alzheimer’s beta-amyloid fibrils, Biochemistry 45, 498–512.

    Article  PubMed  CAS  Google Scholar 

  91. Ritter, C., Maddelein, M. L., Siemer, A. B., Luhrs, T., Ernst, M., Meier, B. H., Saupe, S. J., and Riek, R. (2005) Correlation of structural elements and infectivity of the HET-s prion, Nature 435, 844–848.

    Article  PubMed  CAS  Google Scholar 

  92. Siemer, A. B., Ritter, C., Steinmetz, M. O., Ernst, M., Riek, R., and Meier, B. H. (2006) 13C, 15N resonance assignment of parts of the HET-s prion protein in its amyloid form, J Biomol NMR 34, 75–87.

    Article  PubMed  CAS  Google Scholar 

  93. Wasmer, C., Lange, A., Van Melckebeke, H., Siemer, A. B., Riek, R., and Meier, B. H. (2008) Amyloid fibrils of the HET-s(218–79) prion form a beta solenoid with a triangular hydrophobic core, Science 319, 1523–1526.

    Article  PubMed  CAS  Google Scholar 

  94. Tycko, R. (2006) Molecular structure of amyloid fibrils: insights from solid-state NMR, Quart. Revs. Biophys. 1, 1–55.

    Article  Google Scholar 

  95. Baldus, M. (2007) Magnetic resonance in the solid state: applications to protein folding, amyloid fibrils and membrane proteins, Eur. J. Biophys. 36 Suppl. 1, S37–S48.

    Article  Google Scholar 

  96. Levitt, M. H. (2007) Spin dynamics: basics of nuclear magnetic resonance, John Wiley & Sons, Ltd., Chichester, England.

    Google Scholar 

  97. Chen, B., Thurber, K. R., Shewmaker, F., Wickner, R. B., and Tycko, R. (2009) Measurement of amyloid fibril mass-per-length by tilted-beam transmission electron microscopy, Proc. Natl. Acad. Sci. USA 106, 14339–14344.

    Article  PubMed  CAS  Google Scholar 

  98. Roberts, B. T., and Wickner, R. B. (2003) A class of prions that propagate via covalent auto-activation, Genes Dev. 17, 2083–2087.

    Article  PubMed  CAS  Google Scholar 

  99. Rogoza, T., Goginashvili, A., Rodionova, S., Ivanov, M., Viktorovskaya, O., Rubel, A., Volkov, K., and Mironova, L. (2010) Non-mendelian determinant (ISP+) in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1, Proc. Natl. Acad. Sci. USA 107, 10573–10577.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Program of the National Institute of Diabetes Digestive and Kidney Diseases. The electron diffraction method was developed by Kent Thurber and Rob Tycko (NIH, Bethesda, MD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reed B. Wickner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wickner, R.B., Kryndushkin, D., Shewmaker, F., McGlinchey, R., Edskes, H.K. (2012). Study of Amyloids Using Yeast. In: Sigurdsson, E., Calero, M., Gasset, M. (eds) Amyloid Proteins. Methods in Molecular Biology, vol 849. Humana Press. https://doi.org/10.1007/978-1-61779-551-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-551-0_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-550-3

  • Online ISBN: 978-1-61779-551-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics