Skip to main content

Bacterial Amyloids

  • Protocol
  • First Online:
Amyloid Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 849))

Abstract

Many bacteria can assemble functional amyloid fibers on their cell surface. The majority of bacterial amyloids contribute to biofilm or other community behaviors where cells interact with a surface or with another cell. Bacterial amyloids, like all functional amyloids, share structural and biochemical properties with disease-associated eukaryotic amyloids. The general ability of amyloids to bind amyloid-specific dyes, such as Congo red, and their resistance to denaturation have provided useful tools for scoring and quantifying bacterial amyloid formation. Here, we present basic approaches to study bacterial amyloids by focusing on the well-studied curli amyloid fibers expressed by Enterobacteriaceae. These methods exploit the specific tinctorial and biophysical properties of amyloids. The methods described here are straightforward and can be easily applied by any modern molecular biology lab for the study of other bacterial amyloids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooper, G. J., Willis, A. C., Clark, A., Turner, R. C., Sim, R. B., and Reid, K. B. (1987) Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients, Proc Natl Acad Sci USA 84 , 8628–8632.

    Article  PubMed  CAS  Google Scholar 

  2. Glenner, G. G., and Wong, C. W. (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein, Biochem Biophys Res Commun 120, 885–890.

    Article  PubMed  CAS  Google Scholar 

  3. Prusiner, S. B. (1996) Molecular biology and pathogenesis of prion diseases, Trends Biochem Sci 21, 482–487.

    Article  PubMed  CAS  Google Scholar 

  4. Barnhart, M. M., and Chapman, M. R. (2006) Curli biogenesis and function, Annu Rev Microbiol 60, 131–147.

    Article  PubMed  CAS  Google Scholar 

  5. Gebbink, M. F., Claessen, D., Bouma, B., Dijkhuizen, L., and Wosten, H. A. (2005) Amyloids--a functional coat for microorganisms, Nat Rev Microbiol 3, 333–341.

    Article  PubMed  CAS  Google Scholar 

  6. Elliot, M. A., Karoonuthaisiri, N., Huang, J., Bibb, M. J., Cohen, S. N., Kao, C. M., and Buttner, M. J. (2003) The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor, Genes Dev 17, 1727–1740.

    Article  PubMed  CAS  Google Scholar 

  7. Tukel, C., Nishimori, J. H., Wilson, R. P., Winter, M. G., Keestra, A. M., van Putten, J. P., and Baumler, A. J. (2010) Toll-like receptors 1 and 2 cooperatively mediate immune responses to curli, a common amyloid from enterobacterial biofilms, Cell Microbiol.

    Google Scholar 

  8. Gophna, U., Barlev, M., Seijffers, R., Oelschlager, T. A., Hacker, J., and Ron, E. Z. (2001) Curli fibers mediate internalization of Escherichia coli by eukaryotic cells, Infect Immun 69, 2659–2665.

    Article  PubMed  CAS  Google Scholar 

  9. Austin, J. W., Sanders, G., Kay, W. W., and Collinson, S. K. (1998) Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation, FEMS Microbiol Lett 162, 295–301.

    Article  PubMed  CAS  Google Scholar 

  10. Cegelski, L., Pinkner, J. S., Hammer, N. D., Cusumano, C. K., Hung, C. S., Chorell, E., Aberg, V., Walker, J. N., Seed, P. C., Almqvist, F., Chapman, M. R., and Hultgren, S. J. (2009) Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation, Nat Chem Biol 5, 913–919.

    Article  PubMed  CAS  Google Scholar 

  11. Romero, D., Aguilar, C., Losick, R., and Kolter, R. (2010) Amyloid fibers provide structural integrity to Bacillus subtilis biofilms, Proc Natl Acad Sci USA 107, 2230–2234.

    Article  PubMed  CAS  Google Scholar 

  12. Vidal O, L. R., Prigent-Combaret C, Dorel C, Hooreman M, Lejeune P. (1998) Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression, J Bacteriol 180, 2442–2449.

    PubMed  CAS  Google Scholar 

  13. Johansson, C., Nilsson, T., Olsen, A., and Wick, M. J. (2001) The influence of curli, a MHC-I-binding bacterial surface structure, on macrophage-T cell interactions, FEMS Immunol Med Microbiol 30, 21–29.

    PubMed  CAS  Google Scholar 

  14. Tükel C, R. M., Humphries AD, Wilson RP, Andrews-Polymenis HL, Gull T, Figueiredo JF, Wong MH, Michelsen KS, Akçelik M, Adams LG, Bäumler AJ. (2005) CsgA is a pathogen-associated molecular pattern of Salmonella enterica serotype Typhimurium that is recognized by Toll-like receptor 2, Mol Microbiol 58, 289–304.

    Google Scholar 

  15. Chapman, M. R., Robinson, L. S., Pinkner, J. S., Roth, R., Heuser, J., Hammar, M., Normark, S., and Hultgren, S. J. (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation, Science 295, 851–855.

    Article  PubMed  CAS  Google Scholar 

  16. Collinson, S. K., Emody, L., Muller, K. H., Trust, T. J., and Kay, W. W. (1991) Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis, J Bacteriol 173, 4773–4781.

    PubMed  CAS  Google Scholar 

  17. Claessen, D., Rink, R., de Jong, W., Siebring, J., de Vreugd, P., Boersma, F. G., Dijkhuizen, L., and Wosten, H. A. (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils, Genes Dev 17, 1714–1726.

    Article  PubMed  CAS  Google Scholar 

  18. de Jong W, W. H., Dijkhuizen L, Claessen D. (2009) Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose, Mol Microbiol 73, 1128–1140.

    Google Scholar 

  19. Shewmaker F, M. R., Thurber KR, McPhie P, Dyda F, Tycko R, Wickner RB. (2009) The functional curli amyloid is not based on in-register parallel beta-sheet structure, J Biol Chem 284, 25065–25076.

    Google Scholar 

  20. Collinson, S. K., Doig, P. C., Doran, J. L., Clouthier, S., Trust, T. J., and Kay, W. W. (1993) Thin, aggregative fimbriae mediate binding of Salmonella enteritidis to fibronectin, J Bacteriol 175, 12–18.

    PubMed  CAS  Google Scholar 

  21. Collinson, S. K., Parker, J. M., Hodges, R. S., and Kay, W. W. (1999) Structural predictions of AgfA, the insoluble fimbrial subunit of Salmonella thin aggregative fimbriae, J Mol Biol 290, 741–756.

    Article  PubMed  CAS  Google Scholar 

  22. Zogaj, X., Bokranz, W., Nimtz, M., and Romling, U. (2003) Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract, Infect Immun 71, 4151–4158.

    Article  PubMed  CAS  Google Scholar 

  23. Olsen, A., Jonsson, A., and Normark, S. (1989) Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli, Nature 338, 652–655.

    Article  PubMed  CAS  Google Scholar 

  24. Loferer, H., Hammar, M., and Normark, S. (1997) Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin-binding curli is limited by the intracellular concentration of the novel lipoprotein CsgG, Mol Microbiol 26, 11–23.

    Article  PubMed  CAS  Google Scholar 

  25. Hammer, N. D., Schmidt, J. C., and Chapman, M. R. (2007) The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization, Proc Natl Acad Sci USA 104, 12494–12499.

    Article  PubMed  CAS  Google Scholar 

  26. Hammar M, A. A., Bian Z, Olsén A, Normark S. (1995) Expression of two csg operons is required for production of fibronectin- and congo red-binding curli polymers in Escherichia coli K-12., Mol Microbiol 18, 661–670.

    Google Scholar 

  27. Weiss-Muszkat, M., Shakh, D., Zhou, Y., Pinto, R., Belausov, E., Chapman, M. R., and Sela, S. (2010) Biofilm formation by and multicellular behavior of Escherichia coli O55:H7, an atypical enteropathogenic strain, Appl Environ Microbiol 76, 1545–1554.

    Article  PubMed  CAS  Google Scholar 

  28. Wang, X., and Chapman, M. R. (2008) Sequence determinants of bacterial amyloid formation, J Mol Biol 380, 570–580.

    Article  PubMed  CAS  Google Scholar 

  29. Wang, X., Hammer, N. D., and Chapman, M. R. (2008) The molecular basis of functional bacterial amyloid polymerization and nucleation, J Biol Chem 283, 21530–21539.

    Article  PubMed  CAS  Google Scholar 

  30. Wang, X., Zhou, Y., Ren, J. J., Hammer, N. D., and Chapman, M. R. (2010) Gatekeeper residues in the major curlin subunit modulate bacterial amyloid fiber biogenesis, Proc Natl Acad Sci USA 107, 163–168.

    Article  PubMed  CAS  Google Scholar 

  31. Wang, X., Smith, D. R., Jones, J. W., and Chapman, M. R. (2007) In vitro polymerization of a functional Escherichia coli amyloid protein, J Biol Chem 282, 3713–3719.

    Article  PubMed  CAS  Google Scholar 

  32. Werner Bokranz, X. W., Helmut Tschäpe and Ute Römling. (2005) Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract, J Med Microbiol 54, 1171–1182.

    Article  PubMed  Google Scholar 

  33. Kikuchi, T., Mizunoe, Y., Takade, A., Naito, S., and Yoshida, S. (2005) Curli fibers are required for development of biofilm architecture in Escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells, Microbiol Immunol 49, 875–884.

    PubMed  CAS  Google Scholar 

  34. Bian, Z., Brauner, A., Li, Y., and Normark, S. (2000) Expression of and cytokine activation by Escherichia coli curli fibers in human sepsis, J Infect Dis 181, 602–612.

    Article  PubMed  CAS  Google Scholar 

  35. White AP, G. D., Collinson SK, Banser PA, Kay WW. (2003) Extracellular polysaccharides ­associated with thin aggregative fimbriae of Salmonella enterica serovar enteritidis, J Bacteriol 185, 5398–5407.

    Google Scholar 

  36. Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L., and Mori, H. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, Mol Syst Biol 2, 2006–0008.

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of the Chapman laboratory for helpful discussions and review of this manuscript. This work was supported by the National Institutes of Health Grant AI073847.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Chapman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhou, Y., Blanco, L.P., Smith, D.R., Chapman, M.R. (2012). Bacterial Amyloids. In: Sigurdsson, E., Calero, M., Gasset, M. (eds) Amyloid Proteins. Methods in Molecular Biology, vol 849. Humana Press. https://doi.org/10.1007/978-1-61779-551-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-551-0_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-550-3

  • Online ISBN: 978-1-61779-551-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics