Skip to main content

Agrobacterium-Mediated Insertional Mutagenesis in Histoplasma capsulatum

  • Protocol
  • First Online:
Host-Fungus Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 845))

Abstract

Genome-wide mutagenesis is a powerful method for identifying new genes that contribute to a phenotype of interest. For many fungal pathogens of plants and animals, Agrobacterium tumefaciens-mediated transformation (ATMT) serves as an efficient insertional mutagen. In Histoplasma capsulatum, the T-DNA element transferred by Agrobacterium stably integrates into the genome, and the majority of mutants contain single copies of the inserted sequence. The T-DNA sequence facilitates the determination of the genomic sequence flanking the insertion through hemi-specific PCR techniques, plasmid rescue, or inverse PCR. We present optimized procedures for generating insertional mutants in H. capsulatum using Agrobacterium-mediated transformation and using this for forward and reverse genetic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lacroix B, Tzfira T, Vainstein A, et al (2006) A case of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet 22:29–37

    Article  CAS  Google Scholar 

  2. Lai EM, Kado CI (1998) Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens. J Bacteriol 180:2711–2717

    Article  CAS  Google Scholar 

  3. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  CAS  Google Scholar 

  4. Michielse CB, Hooykaas PJ, van den Hondel CA, et al (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48:1–17

    Article  CAS  Google Scholar 

  5. Sullivan TD, Rooney PJ, Klein BS (2002) Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast. Eukaryot Cell 1:895–905

    Article  CAS  Google Scholar 

  6. Bundock P, den Dulk-Ras A, Beijersbergen A, et al (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Sacchar-omyces cerevisiae. EMBO J 14:3206–3214

    Article  CAS  Google Scholar 

  7. de Groot MJ, Bundock P, Hooykaas PJ, et al (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    Article  Google Scholar 

  8. Marion CL, Rappleye CA, Engle JT, et al (2006) An alpha-(1,4)-amylase is essential for alpha-(1,3)-glucan production and virulence in Histoplasma capsulatum. Mol Microbiol 62:970–983

    Article  CAS  Google Scholar 

  9. Nguyen VQ, Sil A (2008) Temperature-induced switch to the pathogenic yeast form of Histoplasma capsulatum requires Ryp1, a conserved transcriptional regulator. Proc Natl Acad Sci USA 105:4880–4885

    Article  CAS  Google Scholar 

  10. Webster RH, Sil A (2008) Conserved factors Ryp2 and Ryp3 control cell morphology and infectious spore formation in the fungal pathogen Histoplasma capsulatum. Proc Natl Acad Sci USA 105:14573–14578

    Article  CAS  Google Scholar 

  11. Hilty J, Smulian AG, Newman SL (2008) The Histoplasma capsulatum vacuolar ATPase is required for iron homeostasis, intracellular replication in macrophages and virulence in a murine model of histoplasmosis. Mol Microbiol 70:127–139

    Article  CAS  Google Scholar 

  12. Liu YG, Chen Y (2007) High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43:649–654

    Article  CAS  Google Scholar 

  13. Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681

    Article  CAS  Google Scholar 

  14. Youseff BH, Dougherty JA, Rappleye CA (2009) Reverse genetics through random mutagenesis in Histoplasma capsulatum. BMC Microbiol 9:236

    Article  Google Scholar 

  15. Jin S, Song YN, Deng WY, et al (1993) The regulatory VirA protein of Agrobacterium tumefaciens does not function at elevated temperatures. J Bacteriol 175:6830–6835

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad A. Rappleye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zemska, O., Rappleye, C.A. (2012). Agrobacterium-Mediated Insertional Mutagenesis in Histoplasma capsulatum . In: Brand, A., MacCallum, D. (eds) Host-Fungus Interactions. Methods in Molecular Biology, vol 845. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-61779-539-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-539-8_4

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-61779-538-1

  • Online ISBN: 978-1-61779-539-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics