Skip to main content

A Genome-wide RNAi Screen for Polypeptides that Alter rpS6 Phosphorylation

  • Protocol
  • First Online:
mTOR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 821))

Abstract

Mammalian target of rapamycin (mTOR) is a giant protein kinase that controls cell proliferation, growth, and metabolism. mTOR is regulated by nutrient availability, by mitogens, and by stress, and operates through two independently regulated hetero-oligomeric complexes. We have attempted to identify the cellular components necessary to maintain the activity of mTOR complex 1 (mTORC1), the amino acid-dependent, rapamycin-inhibitable complex, using a whole genome approach involving RNAi-induced depletion of cellular polypeptides. We have used a pancreatic ductal adenocarcinoma (PDAC) cell line, Mia-PaCa for this screen; as with many pancreatic cancers, these cells exhibit constitutive activation of mTORC1. PDAC is the most common form of pancreatic cancer and the 5-year survival rate remains 3–5% despite current nonspecific and targeted therapies. Although rapamycin-related mTOR inhibitors have yet to demonstrate encouraging clinical responses, it is now evident that this class of compounds is capable of only partial mTORC1 inhibition. Identifying previously unappreciated proteins needed for maintenance of mTORC1 activity may provide new targets and lead to the development of beneficial therapies for pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell.124: 471–84.

    Article  PubMed  CAS  Google Scholar 

  2. Liu Q, Thoreen C, Wang J, Sabatini D, Gray NS (2009) mTOR Mediated Anti-Cancer Drug Discovery. Drug Discov Today Ther Strateg. 6, 47–55.

    Article  PubMed  CAS  Google Scholar 

  3. Dowling RJ, Topisirovic I, Fonseca BD, Sonenberg N (2010) Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta. 1804, 433–9.

    PubMed  CAS  Google Scholar 

  4. Dancey J (2010) mTOR signaling and drug development in cancer. Nat Rev Clin Oncol. 7, 209–19.

    Article  PubMed  CAS  Google Scholar 

  5. Lane HA, Breuleux M (2009) Optimal targeting of the mTORC1 kinase in human cancer. Curr Opin Cell Biol. 21, 219–29.

    Article  PubMed  CAS  Google Scholar 

  6. Dowling RJ, Pollak M, Sonenberg N (2009) Current status and challenges associated with targeting mTOR for cancer therapy. BioDrugs. 23, 77–91.

    Article  PubMed  CAS  Google Scholar 

  7. Baldo P, Cecco S, Giacomin E, Lazzarini R, Ros B, Marastoni S (2008) mTOR pathway and mTOR inhibitors as agents for cancer therapy. Curr Cancer Drug Targets. 8, 647–65.

    Article  PubMed  CAS  Google Scholar 

  8. Avruch J, Hara K, Lin Y, Liu M, Long X, Ortiz-Vega S, Yonezawa K (2006) Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase. Oncogene. 25:6361–72.

    Article  PubMed  CAS  Google Scholar 

  9. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J (1998) Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem. 273, 14484–94.

    Article  PubMed  CAS  Google Scholar 

  10. Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N (2009) Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab. 296, E592–602.

    Article  PubMed  CAS  Google Scholar 

  11. Sancak Y, Sabatini DM (2009) Rag proteins regulate amino-acid-induced mTORC1 signalling. Biochem Soc Trans. 37, 289–90.

    Article  PubMed  CAS  Google Scholar 

  12. Iorns E, Lord CJ, Turner N, Ashworth A. (2007) Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov. 6, 556–68.

    Article  PubMed  CAS  Google Scholar 

  13. Gressner AM, Wool IG. (1974) The phosphorylation of liver ribosomal proteins in vivo. Evidence that only a single small subunit protein (S6) is phosphorylated. J Biol Chem. 249, 6917–25.

    PubMed  CAS  Google Scholar 

  14. Bandi HR, Ferrari S, Krieg J, Meyer HE, Thomas G (1993) Identification of 40S ribosomal protein S6 phosphorylation sites in Swiss mouse 3T3 fibroblasts stimulated with serum. J Biol Chem. 268, 4530–3.

    PubMed  CAS  Google Scholar 

  15. Ferrari S, Bandi HR, Hofsteenge J, Bussian BM, Thomas G (1991) Mitogen-activated 70KS6 kinase. Identification of in vitro 40S ribosomal S6 phosphorylation sites. J Biol Chem. 266, 22770–5.

    PubMed  CAS  Google Scholar 

  16. Pende M, Um SH, Mieulet V, Sticker M, Goss VL, Mestan J, Mueller M, Fumagalli S, Kozma SC, Thomas G (2004) S6K1(−/−)/S6K2(−/−) mice exhibit perinatal lethality and rapamycin-sensitive 5’-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol. 24, 3112–24.

    Article  PubMed  CAS  Google Scholar 

  17. Price DJ, Grove JR, Calvo V, Avruch J, Bierer BE (1992) Rapamycin-induced inhibition of the 70-kilodalton S6 protein kinase. Science 257, 973–7.

    Article  PubMed  CAS  Google Scholar 

  18. Isotani S, Hara K, Tokunaga C, Inoue H, Avruch J, Yonezawa K. (1999) Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J Biol Chem. 274, 34493–8.

    Article  PubMed  CAS  Google Scholar 

  19. Alessi DR, Kozlowski MT, Weng QP, Morrice N, Avruch J. (1998) 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol, 8, 69–81.

    Article  PubMed  CAS  Google Scholar 

  20. Weng QP, Kozlowski M, Belham C, Zhang A, Comb MJ, Avruch J. (1998) Regulation of the p70 S6 kinase by phosphorylation in vivo. Analysis using site-specific anti-phosphopeptide antibodies. J Biol Chem. 273, 16621–9.

    CAS  Google Scholar 

  21. Ruvinsky I, Katz M, Dreazen A, Gielchinsky Y, Saada A, Freedman N, Mishani E, Zimmerman G, Kasir J, Meyuhas O (2009) Mice deficient in ribosomal protein S6 phosphorylation suffer from muscle weakness that reflects a growth defect and energy deficit. PLoS One. 19; 4(5):e5618.

    Google Scholar 

  22. Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem. 284, 8023–32.

    Article  PubMed  CAS  Google Scholar 

  23. Yunis AA, Arimura GK, Russin DJ (1977) Human pancreatic carcinoma (MIA PaCa-2) in continuous culture: sensitivity to asparaginase. Int J Cancer. 19, 128–35.

    Article  PubMed  CAS  Google Scholar 

  24. Sipos B, Möser S, Kalthoff H, Török V, Löhr M, Klöppel G (2003) A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform. Virchows Arch. 442, 444–52.

    PubMed  Google Scholar 

  25. Grewe M, Gansauge F, Schmid RM, Adler G, Seufferlein T (1999) Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Res. 59, 3581–7.

    PubMed  CAS  Google Scholar 

  26. http://www.measuringusability.com/pcalcz.php.

  27. Ekins S, Nikolsky Y, Bugrim A, Kirillov E, Nikolskaya T (2007) Pathway mapping tools for analysis of high content data. Methods Mol Biol. 356, 19–50.

    Google Scholar 

  28. Ganter B, Giroux CN. (2008) Emerging applications of network and pathway analysis in drug discovery and development. Curr Opin Drug Discov Devel. 11, 86–94.

    PubMed  CAS  Google Scholar 

  29. Phelan MC (2006) Techniques for Mammalian Cell Culture. Curr Protocols Hum. Genet. Appendix 3.

    Google Scholar 

Download references

Acknowledgments

This work is supported by NIH awards CA73818 and DK17776 and the Massachusetts General Hospital “ECOR Fund for Medical Discovery.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angela Papageorgiou or Joseph Avruch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Papageorgiou, A., Avruch, J. (2012). A Genome-wide RNAi Screen for Polypeptides that Alter rpS6 Phosphorylation. In: Weichhart, T. (eds) mTOR. Methods in Molecular Biology, vol 821. Humana Press. https://doi.org/10.1007/978-1-61779-430-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-430-8_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-429-2

  • Online ISBN: 978-1-61779-430-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics