Skip to main content

Chromatin Immunoprecipitation Assay as a Tool for Analyzing Transcription Factor Activity

  • Protocol
  • First Online:
Transcriptional Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 809))

Abstract

Differential gene expression is facilitated by transcriptional regulatory mechanisms and chromatin modifications through DNA–protein interactions. One of the widely used assays to study this is chromatin immunoprecipitation (ChIP) assay, which enables analysis of association of regulatory molecules to specific promoters and histone modifications in vivo. This is of immense value as ChIP assays can provide glimpse of the regulatory mechanisms involved in gene expression in vivo. This article outlines the general strategies and protocols to study ChIP assays in differential recruitment of transcriptional factors (TFs) and also global analysis of transcription factor recruitment is discussed. Further, the applications of ChIP assays for discovering novel genes that are dependent on specific transcription factors were addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fried, M.G. (1989) Measurement of protein-DNA interaction parameters by electrophoresis mobility shift assay. Electrophoresis 10: 366–76.

    Article  PubMed  CAS  Google Scholar 

  2. Christy, R.J., et al. (1991) CCAAT/enhancer binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-L1 preadipocytes. Proc Natl Acad Sci USA 88: 2593–7.

    Article  PubMed  CAS  Google Scholar 

  3. Pillai, S., P. Dasgupta, and S.P. Chellappan (2009) Chromatin immunoprecipitation assays: analyzing transcription factor binding and histone modifications in vivo. Methods Mol Biol 523: 323–39.

    Article  PubMed  CAS  Google Scholar 

  4. Yan, Y., H. Chen, and M. Costa (2004) Chromatin immunoprecipitation assays. Methods Mol Biol 287: 9–19.

    PubMed  CAS  Google Scholar 

  5. Nowak, D.E., B. Tian, and A.R. Brasier (2005) Two-step cross-linking method for identification of NF-kappaB gene network by chromatin immunoprecipitation. Biotechniques 39: 715–25.

    Article  PubMed  CAS  Google Scholar 

  6. Dasgupta, P. and S.P. Chellappan (2007) Chromatin immunoprecipitation assays: molecular analysis of chromatin modification and gene regulation. Methods Mol Biol 383: 135–52.

    Article  PubMed  CAS  Google Scholar 

  7. Kurdistani, S.K. and M. Grunstein (2003) In vivo protein-protein and protein-DNA crosslinking for genomewide binding microarray. Methods 31: 90–5.

    Article  PubMed  CAS  Google Scholar 

  8. Breiling, A., et al. (2001) General transcription factors bind promoters repressed by Polycomb group proteins. Nature 412: 651–5.

    Article  PubMed  CAS  Google Scholar 

  9. Dedon, P.C., et al. (1991) A simplified formaldehyde fixation and immunoprecipitation technique for studying protein-DNA interactions. Anal Biochem 197: 83–90.

    Article  PubMed  CAS  Google Scholar 

  10. Mukhopadhyay, A., et al. (2008) Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans. Nat Prot 3: 698–709.

    Article  CAS  Google Scholar 

  11. Hassan, M.Q., et al. (2004) Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Mol Cell Biol 24: 9248–61.

    Article  PubMed  CAS  Google Scholar 

  12. Botquin, V., et al. (1998) New POU dimer configuration mediates antagonistic control of an osteopontin preimplantation enhancer by Oct-4 and Sox-2. Genes Dev 12: 2073–90.

    Article  PubMed  CAS  Google Scholar 

  13. Weinmann, A.S. and P.J. Farnham (2002) Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods 26: 37–47.

    Article  PubMed  CAS  Google Scholar 

  14. Weinmann, A.S., et al. (2001) Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol Cell Biol 21: 6820–32.

    Article  PubMed  CAS  Google Scholar 

  15. Martone, R., et al. (2003) Distribution of NF-kappaB-binding sites across human chromosome 22. Proc Natl Acad Sci USA 100: 12247–52.

    Article  PubMed  CAS  Google Scholar 

  16. Heckman, C.A. and L.M. Boxer (2002) Allele-specific analysis of transcription factors binding to promoter regions. Methods 26: 19–26.

    Article  PubMed  CAS  Google Scholar 

  17. Johnson, K.D. and E.H. Bresnick (2002) Dissecting long-range transcriptional mechanisms by chromatin immunoprecipitation. Methods 26: 27–36.

    Article  PubMed  CAS  Google Scholar 

  18. Cosma, M.P., T. Tanaka, and K. Nasmyth (1999) Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97: 299–311.

    Article  PubMed  CAS  Google Scholar 

  19. Metivier, R., et al. (2004) Transcriptional complexes engaged by apo-estrogen receptor-alpha isoforms have divergent outcomes. EMBO J 23: 3653–66.

    Article  PubMed  CAS  Google Scholar 

  20. Flanagin, S., et al. (2008) Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events. Nucleic Acids Res 36: e17.

    Article  PubMed  Google Scholar 

  21. Dahl, J.A. and P. Collas (2007) Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem Cells 25: 1037–46.

    Article  PubMed  CAS  Google Scholar 

  22. Gade, P., et al. (2008) Critical role for transcription factor C/EBP-beta in regulating the expression of death-associated protein kinase 1. Mol Cell Biol 28: 2528–48.

    Article  PubMed  CAS  Google Scholar 

  23. Li, H., et al. (2008) The Med1 subunit of transcriptional mediator plays a central role in regulating CCAAT/enhancer-binding protein-beta-driven transcription in response to interferon-gamma. J Biol Chem, 283: 13077–86.

    Article  PubMed  CAS  Google Scholar 

  24. Gade, P., et al. (2009) Down-regulation of the transcriptional mediator subunit Med1 contributes to the loss of expression of metastasis-associated dapk1 in human cancers and cancer cells. Int J Cancer 125: 1566–74.

    Article  PubMed  CAS  Google Scholar 

  25. Orlando, V. (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25: 99–104.

    Article  PubMed  CAS  Google Scholar 

  26. Nguyen, J., et al. (2008) Assessment of sera for chromatin-immunoprecipitation. Biotechniques 44: 66–68.

    Article  PubMed  CAS  Google Scholar 

  27. Wells, J. and P.J. Farnham (2002) Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation. Methods 26: 48–56.

    Article  PubMed  CAS  Google Scholar 

  28. Nelson, J.D., et al. (2006) Fast chromatin immunoprecipitation assay. Nucleic Acids Res 34: p. e2.

    Google Scholar 

  29. Hug, B.A., et al. (2004) A chromatin immunoprecipitation screen reveals protein kinase Cbeta as a direct RUNX1 target gene. J Biol Chem, 279: 825–30.

    Article  PubMed  CAS  Google Scholar 

  30. Hartman, S.E., et al. (2005) Global changes in STAT target selection and transcription regulation upon interferon treatments. Genes Dev 19: 2953–68.

    Article  PubMed  CAS  Google Scholar 

  31. Odom, D.T., et al. (2004) Control of pancreas and liver gene expression by HNF transcription factors. Science 303: 1378–81.

    Article  PubMed  CAS  Google Scholar 

  32. Euskirchen, G., et al. (2004) CREB binds to multiple loci on human chromosome 22. Mol Cell Biol 24: 3804–14.

    Article  PubMed  CAS  Google Scholar 

  33. Cawley, S., et al. (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116: 499–509.

    Article  PubMed  CAS  Google Scholar 

  34. Kim, J., et al. (2005) Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment. Nat Methods, 2: 47–53.

    Article  PubMed  CAS  Google Scholar 

  35. Impey, S., et al. (2004) Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119: 1041–54.

    PubMed  CAS  Google Scholar 

  36. Wei, C.L., et al. (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell, 124: 207–19.

    Article  PubMed  CAS  Google Scholar 

  37. Loh, Y.H., et al. (2006) The Oct4 and Nanog tran-scription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38: 431–40.

    Article  PubMed  CAS  Google Scholar 

  38. Bonifacino, J.S. and E.C. Dell’Angelica (2001) Immunoprecipitation. Curr Protoc Cell Biol, Chapter 7: p. Unit 7 2.

    Google Scholar 

  39. O’Neill, L.P. and B.M. Turner (2003) Immunoprecipitation of native chromatin: NChIP. Methods 31: 76–82.

    Article  PubMed  Google Scholar 

  40. Thorne, A.W., F.A. Myers, and T.R. Hebbes (2004) Native chromatin immunoprecipitation. Methods Mol Biol 287: 21–44.

    PubMed  CAS  Google Scholar 

  41. Hebbes, T.R., et al. (1994) Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. EMBO J, 13: 1823–30.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH grants CA78282 and CA105005 to D.V.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhan V. Kalvakolanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gade, P., Kalvakolanu, D.V. (2012). Chromatin Immunoprecipitation Assay as a Tool for Analyzing Transcription Factor Activity. In: Vancura, A. (eds) Transcriptional Regulation. Methods in Molecular Biology, vol 809. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-376-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-376-9_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-375-2

  • Online ISBN: 978-1-61779-376-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics